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Administrative
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• Next Thursday, let’s capture some stuff, bring yourself 
or an object of your choice. 

• Today’s Office Hour from 2:30 to 3:30
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Surface Registration
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Align two partially-overlapping!

meshes given initial guess for!

relative transform



Outline
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• ICP: Iterative Closest Points 

• Classification of ICP variants 
• Faster alignment 
• Better robustness 

• ICP as function minimization



Aligning 3D Data
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If correct correpondences are known, can find correct 
relative rotation/translation 



Aligning 3D Data
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• How to find correspondences: User input? Feature 
detection? Signatures? 

• Alternatives: assume closest points correspond



Aligning 3D Data
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• … and iterate to find alignment 
• Iterative Closest Points (ICP) [Besl & Mckay] 

• Converges if starting position “close enough”



Basic ICP
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• Select e.g., 1000 random points 

• Match each to closest point on other scan, using data 
structure such as k-d tree 

• Reject pairs with distance > k times median 

• Construct error function: 

!

!

• Minimize (closed form solution in [Horn 87])

E =
X
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Shape Matching: Translation
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• Define bary-centered point sets 
!

!

!

!

• Optimal translation vector    maps barycenters onto each 
other
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Shape Matching: Rotation
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• Approximate nonlinear rotation by general matrix 
!

!

• The least squares linear transformation is 
!

!

!

• SVD & Polar decomposition extracts rotation from 
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ICP Variants
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Variants on the following stages of ICP have been 
proposed!

1. Selecting source points (from one or both meshes) 

2. Matching to points in the other mesh 

3. Weighting the correspondences 

4. Rejecting certain (outliers) point pairs 

5. Assining an error metric to the current transform 

6. Minimizing the error metric w.r.t. transformation



ICP Variants
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Can analyze various aspects of performance:!
• Speed 

• Stability 

• Tolerance of noise and/or outliers 

• Maximum initial misalignment 

Comparisons of many variants in!
• [Rusinkiewicz & Levoy, 3DIM 2001]



ICP Variants
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1. Selecting source points (from one or both meshes) 

2. Matching to points in the other mesh 

3. Weighting the correspondences 

4. Rejecting certain (outliers) point pairs 

5. Assining an error metric to the current transform!

6. Minimizing the error metric w.r.t. transformation



Point-to-Plane Error Metric
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Using point-to-plane distance instead of point-to-point 
lets flat regions slide along each other [Chen & Medioni 
91] 

!



Point-to-Plane Error Metric
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• Error function: 
!

!

where     is a rotation matrix,    is a translation vector 
• Linearize (i.e. assume that                ,               ): 
!

!

!

• Result: overconstrained linear system
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Point-to-Plane Error Metric
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• Overconstrained linear system 
!

!

!

!

!

• Solve using least squares

Ax = b
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Improving ICP Stabilitiy

• Closest compatible point 

• Stable sampling



ICP Variants
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1. Selecting source points (from one or both meshes) 

2. Matching to points in the other mesh!

3. Weighting the correspondences 

4. Rejecting certain (outliers) point pairs 

5. Assining an error metric to the current transform 

6. Minimizing the error metric w.r.t. transformation



Closest Point Search
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• Find closest point of a query point 

• Brute force: O(n) complexity 

!

• Use Hierarchical BSP tree 
• Binary space partitioning tree (general kD-tree) 
• Recursively partition 3D space by planes 
• Tree should be balanced, put plane at median 
• log(n) tree levels, complexity O(nlog n)



BSP Closest Point Search
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BSP Closest Point Search
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BSP Closest Point Search
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BSP Closest Point Search
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BSP Closest Point Search
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BSP Closest Point Search

!26

BSPNode::dist(Point x, Scalar& dmin)!
{!
  if (leaf_node())!
    for each sample point p[i]!
      dmin = min(dmin, dist(x, p[i]));!
!
  else!
  {!
    d = dist_to_plane(x);!
    if (d < 0) !
    {!
      left_child->dist(x, dmin);!
      if (|d| < dmin) right_child->dist(x, dmin);!
    } !
    else !
    {!
      right_child->dist(x, dmin);!
      if (|d| < dmin) left_child->dist(x, dmin);!
    }!
  }!
}



Closest Compatible Point
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• Closest point often a bad approximation to 
corresponding point 

• Can improve matching effectiveness by restricting 
match to compatible points 
• Compatibility of colors [Godin et al. ’94] 
• Compatibility of normals [Pulli ’99] 
• Other possibilities: curvature, higher-order 

derivatives, and other local features (remember: 
data is noisy)



ICP Variants
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1. Selecting source points (from one or both meshes)!

2. Matching to points in the other mesh 

3. Weighting the correspondences 

4. Rejecting certain (outliers) point pairs 

5. Assining an error metric to the current transform 

6. Minimizing the error metric w.r.t. transformation



Selecting Source Points
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• Use all points 

• Uniform subsampling 

• Random sampling 

• Stable sampling [Gelfand et al. 2003] 

• Select samples that constrain all degrees of freedom 
of the rigid-body transformation



Stable Sampling
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Uniform Sampling Stable Sampling



Covariance Matrix
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• Aligning transform is given by                          , where 

!

!

!

!

• Covariance matrix                   determines the change in 
error when surfaces are moved from optimal alignment
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Sliding Directions
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• Eigenvectors of      with small eigenvalues correspond to 
sliding transformations

C

3 small eigenvalues!
2 translation 
1 rotation

3 small eigenvalues!
3 rotation

2 small eigenvalues!
1 translation 
1 rotation

1 small eigenvalue!
1 rotation

1 small eigenvalue!
1 translation [Gelfand]



Stability Analysis
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6 DOFs stable

5 DOFs stable3 DOFs stable

4 DOFs stable

Key:



Sample Selection
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• Select points to prevent small eigenvalues 

• Based on       obtained from sparse sampling

• Simpler variant: normal-space sampling 

• select points with uniform distribution of normals 

• Pro: faster, does not require eigenanalysis 

• Con: only constrains translation

C



Result
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Stability-based or normal-space sampling important for 
smooth areas with small features 

!

Random Sampling Normal-space Sampling



Selection vs. Weighting
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• Could achieve same effect with weighting 

• Hard to ensure enough samples in features except at 
high sampling rates 

• However, have to build special data structure 

• Preprocessing / run-time cost tradeoff



Improving ICP Speed
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Projection-based matching

1. Selecting source points (from one or both meshes) 

2. Matching to points in the other mesh!

3. Weighting the correspondences 

4. Rejecting certain (outliers) point pairs 

5. Assining an error metric to the current transform 

6. Minimizing the error metric w.r.t. transformation



Finding Corresponding Points
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• Finding Closest point is most expensive stage of the ICP 
algorithm 

• Brute force search – O(n) 

• Spatial data structure (e.g., k-d tree) – O(log n)



Projection to Find Correspondence
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• Idea: use a simpler algorithm to find correspondences 

• For range images, can simply project point [Blais 95] 

• Constant-time 

• Does not require precomputing a spatial data structure



Projection-Based Matching
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• Slightly worse performance per iteration 

• Each iteration is on to two orders of magnitude faster than 
closest point 

• Result: can align two range images in a few milliseconds, 
vs. a few seconds



Application
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• Given: 

• A scanner that returns range images in real time 

• Fast ICP 

• Real-time merging and rendering 

• Result: 3D model acquisition 

• Tight feedback loop with user 

• Can see and fill holes while scanning



Examples

!42

[Newcombe et al. ’11] 
KinectFusion

[Rusinkiewicz et al. ‘02] Artec Group



Theoretical Analysis of ICP Variants
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• One way of studying performance is via empirical tests 
on various scenes 

• How to analyze performance analytically? 

• For example, when does point-to-plan help? Under what 
conditions does projection-based matching work?



What does ICP do?
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• Two ways of thinking about ICP: 

• Solving correspondence problem 

• Minimizing point-to-surface squared distance

• ICP is like Newton’s method on an approximation of the 
distance function



What does ICP do?
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• Two ways of thinking about ICP: 

• Solving correspondence problem 

• Minimizing point-to-surface squared distance

• ICP is like Newton’s method on an approximation of the 
distance function



What does ICP do?
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• Two ways of thinking about ICP: 

• Solving correspondence problem 

• Minimizing point-to-surface squared distance

• ICP is like Newton’s method on an approximation of the 
distance function 

• ICP variants affect shape of the global error function or 
local approximation



Point-to-Surface Distance
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Point-to-Point Distance
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Point-to-Plane Distance

!49



Global Registration Goal
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• Given: n scans around an object 

• Goal: align them all 

• First attempt: apply ICP to each scan to one other



Global Registration Goal

!51

• Want method for distributing accumulated error among all 
scans



Approach #1: Avoid the Problem
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• In some cases, have 1 (possibly low-resolution) scan that 
covers most surface 

• Align all other scans to this “anchor” [Turk 94] 

• Disadvantage: not always practical to obtain anchor scan



Approach #2: The Greedy Solution
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• Align each new scan to all previous scans [Masuda ’96] 

• Disadvantages: 

• Order dependent 

• Doesn’t spread out error



Approach #3: The Brute-Force Solution
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• While not converged: 

• For each scan: 

• For each point: 

• For every other scan 

• Find closest point 

• Minimize error w.r.t. transforms of all scans 

• Disadvantage: 

• Solve (6n)x(6n) matrix equation, where n is number of 
scans



Approach #3a: Slightly Less Brute-Force Solution
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• While not converged: 

• For each scan: 

• For each point: 

• For every other scan 

• Find closest point 

• Minimize error w.r.t. transforms of this scans 

• Faster than previous method (matrices are 6x6) [Bergevin 
’96, Benjemaa ‘97]



Graph Methods
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• Many global registration algorithms create a graph of 
pairwise alignments between scans

Scan 1

Scan 2

Scan 3

Scan 4

Scan 5

Scan 6



Pulli’s Algorithm
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• Perform pairwise ICPs, record sample (e.g., 200) of 
corresponding points 

• For each scan, starting w most connected 

• Align scan to existing set 

• While (change in error) > threshold 

• Align each scan to others 

• All alignments during global reg phase use precomputed 
correspondending points.



Bad ICP in Global Registration
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One bad ICP can throw off the entire model!

Correct Global Registration Global Registration Including Bad ICP
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Next Time

!60

3D Capture Session



http://cs599.hao-li.com

Thanks!

!61

http://cs599.hao-li.com

