
CSCI 599: Digital Geometry Processing

Hao Li
http://cs599.hao-li.com

!1

Spring 2014

1.2 Surface Representation !
& Data Structures

http://cs599.hao-li.com

Administrative

!2

• No class next Tuesday, due to Siggraph deadline!

• Introduction to first programming exercise next
Thursday

Siggraph Deadline 2013@ILM, Ewww!

After Siggraph Deadline @ILM

!3

Last Time

!4

Reconstruction

Geometry Processing

Capture Analysis

Manipulation

Rendering

Reproduction

Geometric Representations

!5implicit surfaces / particles volumetric tetrahedrons

point based quad mesh triangle mesh

Geometric Representations

!6implicit surfaces / particles volumetric tetrahedrons

point based quad mesh triangle mesh

Surface Representations

High Resolution

!7

Large scenes

!8

Outline

!9

• Parametric Approximations

• Polygonal Meshes

• Data Structures

Parametric Representation

!10

r

f : � � IR2 ⇥ IR3, S� = f(�)

f : [0, 2�]� IR2

f(t) =
�

r cos(t)
r sin(t)

⇥

Surface is the range of a function

2D example: A Circle

Parametric Representation

!11

f : � � IR2 ⇥ IR3, S� = f(�)

f : [0, 2�]� IR2

f(t) =
�

r cos(t)
r sin(t)

⇥

Surface is the range of a function

2D example: Island coast line

?
?

Piecewise Approximation

!12

f : � � IR2 ⇥ IR3, S� = f(�)

f : [0, 2�]� IR2

f(t) =
�

r cos(t)
r sin(t)

⇥

Surface is the range of a function

2D example: Island coast line

?
?

Polynomial Approximation

!13

f(t) =
p�

i=0

ci ti =
p�

i=0

c̃i �i(t)

f(ti) = g(ti) , 0 ⇥ t0 < · · · < tp ⇥ h

|f(t)� g(t)| ⇥ 1
(p + 1)!

max f (p+1)
p⇤

i=0

(t� ti) = O
�
h(p+1)

⇥

g(h) =
p⇤

i=0

1
i!

g(i)(0) hi + O
�
hp+1

⇥

Polynomials are computable functions

Taylor expansion up to degree

Error for approximation by polynomial

p

g f

Polynomial Approximation

!14

Improve approximation quality by!
• increasing … higher order polynomials
• decreasing … shorter / more segments

Issues!
• smoothness of the target data ()
• smothness condition between segments

Approximation error is O(hp+1)

h

p

max

t
f (p+1)

(t)

Polygonal Meshes

!15

3 6 12 24

Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is O(h2)

25% 6.5% 1.7% 0.4%

Polygonal Meshes

!16

Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is
• Error inversely proportional to #faces

O(h2)

Polygonal Meshes

!17

Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is
• Error inversely proportional to #faces
• Arbitrary topology surfaces

O(h2)

Polygonal Meshes

!18

Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is
• Error inversely proportional to #faces
• Arbitrary topology surfaces
• Piecewise smooth surfaces

O(h2)

Polygonal Meshes

!19

Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is
• Error inversely proportional to #faces
• Arbitrary topology surfaces
• Piecewise smooth surfaces
• Adaptive sampling

O(h2)

Polygonal Meshes

!20

Polygonal meshes are a good compromise!
• Piecewise linear approximation → error is
• Error inversely proportional to #faces
• Arbitrary topology surfaces
• Piecewise smooth surfaces
• Adaptive sampling
• Efficient GPU-based rendering/processing

O(h2)

Outline

!21

• Parametric Approximations

• Polygonal Meshes

• Data Structures

Graph Definitions

!22

A
B

C D
E

F

G
H

I

J K

• Graph {V,E}

!23

A
B

C D
E

F

G
H

I

J K

Graph Definitions

• Graph {V,E}
• Vertices V = {A,B,C,…,K}

!24

A
B

C D
E

F

G
H

I

J K

Graph Definitions

• Graph {V,E}
• Vertices V = {A,B,C,…,K}
• Edges E = {(AB),(AE),(CD),…}

!25

A
B

C D
E

F

G
H

I

J K

Graph Definitions

• Graph {V,E}
• Vertices V = {A,B,C,…,K}
• Edges E = {(AB),(AE),(CD),…}
• Faces F = {(ABE),(EBF),(EFIH),…}

!26

A
B

C D
E

F

G
H

I

J K

Graph Definitions

Vertex degree or valence:!
number of incident edges!

• deg(A) = 4
• deg(E) = 5

!27

A
B

C D
E

F

G
H

I

J K

Connectivity

Connected:!
Path of edges connecting
every two vertices

Connectivity

!28

A
B

C D
E

F

G
H

I

J K

Connected:!
Path of edges connecting
every two vertices
!

Subgraph:!
Graph {V’,E’} is a subgraph of graph
{V,E} if V’ is a subset of V and E’ is a
subset of E incident on V’.

Connectivity

!29

A
B

C D
E

F

G
H

I

J K

Connected:!
Path of edges connecting
every two vertices
!

Subgraph:!
Graph {V’,E’} is a subgraph of graph
{V,E} if V’ is a subset of V and E’ is a
subset of E incident on V’.

Connectivity

!30

A
B

C D
E

F

G
H

I

J K

Connected:!
Path of edges connecting
every two vertices
!

Subgraph:!
Graph {V’,E’} is a subgraph of graph
{V,E} if V’ is a subset of V and E’ is a
subset of E incident on V’.
!

Connected Components:!
Maximally connected subgraph

Connectivity

!31

A
B

C D
E

F

G
H

I

J K

Connected:!
Path of edges connecting
every two vertices
!

Subgraph:!
Graph {V’,E’} is a subgraph of graph
{V,E} if V’ is a subset of V and E’ is a
subset of E incident on V’.
!

Connected Components:!
Maximally connected subgraph

Graph Embedding

!32

Embedding: Graph is embedded in , if
each vertex is assigned a position in .

Embedding in Embedding in

Rd

Rd

R2 R3

Graph Embedding

!33

Embedding: Graph is embedded in , if
each vertex is assigned a position in .

Embedding in R3

Rd

Rd

!34

Planar Graph

Planar Graph !
Graph whose vertices and edges can be
embedded in such that its edges do
not intersect

Planar Graph Plane Graph Straight Line !
Plane Graph

R2

Triangulation

!35

A
B

C D
E

F

G
H

I

J K

Triangulation:!
Straight line plane graph where every
face is a triangle

Why?!
• simple homogenous data structure
• efficient rendering
• simplifies algorithms
• by definition, triangle is planar
• any polygon can be triangulated

Mesh

!36

• Mesh: straight-line graph
embedded in

• Boundary edge: adjacent to
exactly 1 face

• Regular edge: adjacent to
exactly 2 faces

• Singular edge: adjacent to
more than 2 faces

• Closed mesh: mesh with no
boundary edges

R3

Polygon

!37

A geometric graph
with in ,
and
is called a polygon

!
!
!

!
A polygon is called

• flat, if all edges are on a plane
• closed, if

Q = (V,E)
V = {p0,p1, . . . ,pn�1} Rd d � 2
E = {(p0,p1) . . . (pn�2,pn�1)}

p0 = pn�1

While digital artists call it Wireframe, …

!38

Polygonal Mesh

!39

A set of finite number of closed polygons if:!
• Intersection of inner polygonal areas is empty
• Intersection of 2 polygons from is either empty, a point

or an edge
• Every edge belongs to at least one polygon
• The set of all edges which belong only to one polygon are

called edges of the polygonal mesh and are either empty or
form a single closed polygon

M Qi

M
e 2 E

p 2 P

e 2 E

Polygonal Mesh Notation

!40

vi � R3

M = ({vi}, {ej}, { fk})

geometry

Polygonal Mesh Notation

!41

ei, fi � R3topology
vi � R3

M = ({vi}, {ej}, { fk})

geometry

Global Topology: Genus

!42

• Genus: Maximal number of closed simple cutting
curves that do not disconnect the graph into multiple
components.

• Or half the maximal number of closed paths that do
no disconnect the mesh

• Informally, the number of holes or handles

Genus 0 Genus 1 Genus 2 Genus 3

Euler Poincaré Formula

!43

• For a closed polygonal mesh of genus , the relation
of the number of vertices, of edges, and of faces
is given by Euler’s formula:!

!
!
!

!
• The term is called the Euler characteristic

g
V E F

V � E + F = 2(1� g)

2(1� g) �

Euler Poincaré Formula

!44

V � E + F = 2(1� g)

4� 6 + 4 = 2(1� 0)

Euler Poincaré Formula

!45

16� 32 + 16 = 2(1� 1)

V � E + F = 2(1� g)

Average Valence of Closed Triangle Mesh

!46

Theorem: Average vertex degree in a closed manifold
triangle mesh is ~6

Proof: 3F = 2E by counting edges of faces!
!
by Euler’s formula: V+F-E = V+2E/3-E = 2-2g!
Thus E = 3(V-2+2g)!
!
So average degree = 2E/V = 6(V-2+2g) ~6 for large V

Euler Consequences

!47

Triangle mesh statistics!
•
•
• Average valence = 6

Quad meshe statistics!
•
•
• Average valence = 4

F ⇡ 2V

E ⇡ 3V

F ⇡ V

E ⇡ 2V

Euler Characteristic

!48

Sphere Torus Moebius Strip Klein Bottle

� = 2 � = 0 � = 0 � = 0

How many pentagons?

!49

How many pentagons?

!50

Any closed surface of genus 0 consisting only of
hexagons and pentagons and where every vertex
has valence 3 must have exactly 12 pentagons

Two-Manifold Surfaces

!51

Local neighborhoods are disk-shaped!
!

!

Guarantees meaningful neighbor enumeration!
• required by most algorithms

!

Non-manifold Examples:

f(D✏[u, v]) = D�[f(u, v)]

Outline

!52

• Parametric Approximations

• Polygonal Meshes

• Data Structures

Mesh Data Structures

!53

• How to store geometry & connectivity?
• compact storage and file formats
• Efficient algorithms on meshes

• Time-critical operations
• All vertices/edges of a face
• All incident vertices/edges/faces of a vertex

Data Structures

!54

What should be stored?!
• Geometry: 3D vertex coordinates
• Connectivity: Vertex adjacency
• Attributes:

• normals, color, texture coordinates, etc.
• Per Vertex, per face, per edge

Data Structures

!55

What should it support?!
• Rendering
• Queries

• What are the vertices of face #3?
• Is vertex #6 adjacent to vertex #12?
• Which faces are adjacent to face #7?

• Modifications
• Remove/add a vertex/face
• Vertex split, edge collapse

Data Structures

!56

Different Data Structures:!
• Time to construct (preprocessing)
• Time to answer a query

• Random access to vertices/edges/faces
• Fast mesh traversal
• Fast Neighborhood query

• Time to perform an operation
• split/merge

• Space complexity
• Redundancy

Data Structures

!57

Different Data Structures:!
• Different topological data storage
• Most important ones are face and edge-based

(since they encode connectivity)
• Design decision ~ memory/speed trade-off

Face Set (STL)

!58

Triangles

x11 y11 z11 x12 y12 z12 x13 y13 z13

x21 y21 z21 x22 y22 z22 x23 y23 z23

...

xF1 yF1 zF1 xF2 yF2 zF2 xF3 yF3 zF3

Face:!
• 3 vertex positions

9*4 = 36 B/f (single precision)!
72 B/v (Euler Poincaré)
!
No explicit connectivity

Shared Vertex (OBJ,OFF)

!59

Vertices

x1 y1 z1

...

xV yV zV

Triangles

i11 i12 i13

...

...

...

...

iF1 iF2 iF3

12 B/v + 12 B/f = 36B/v
!
No explicit adjacency info

Indexed Face List:!
• Vertex: position
• Face: Vertex Indices

Face-Based Connectivity

!60

64 B/v!
!
No edges: Special case
handling for arbitrary
polygons

Vertex:!
• position
• 1 face

!

Face:!
• 3 vertices
• 3 face neighbors

Edges always have the same !
topological structure

!61

Efficient handling of polygons with!
variable valence

(Winged) Edge-Based Connectivity

!62

Vertex:!
• position
• 1 edge

!

Edge:!
• 2 vertices
• 2 faces
• 4 edges

!

Face:!
• 1 edges

120 B/v
!
Edges have no orientation:
special case handling for
neighbors

Halfedge-Based Connectivity

!63

96 to 144 B/v!
!
Edges have orientation: No-
runtime overhead due to
arbitrary faces

Vertex:!
• position
• 1 halfedge

!

Edge:!
• 1 vertex
• 1 face
• 1, 2, or 3 halfedges

!

Face:!
• 1 halfedge

Arbitrary Faces during Modeling

!64

One-Ring Traversal

!65

1. Start at vertex

One-Ring Traversal

!66

1. Start at vertex
2. Outgoing halfedge

One-Ring Traversal

!67

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge

One-Ring Traversal

!68

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge

One-Ring Traversal

!69

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
5. Opposite

One-Ring Traversal

!70

1. Start at vertex
2. Outgoing halfedge
3. Opposite halfedge
4. Next halfedge
5. Opposite
6. Next
7. …

Halfedge datastructure Libraries

!71

CGAL!
• www.cgal.org
• Computational Geometry
• Free for non-commercial use

!

OpenMesh!
• www.openmesh.org
• Mesh processing
• Free, LGPL license

Why Openmesh?

!72

Flexible / Lightweight!
• Random access to vertices/edges/faces
• Arbitrary scalar types
• Arrays or lists as underlying kernels

!

Efficient in space and time!
• Dynamic memory management for array-based

meshes (not in CGAL)
• Extendable to specialized kernels for non-manifold

meshes (not in CGAL)

!

Easy to Use

Literature

!73

• Textbook: Chapter
• http://www.openmesh.org
• Kettner, Using generic programming for designing a data structure

for polyhedral surfaces, Symp. on Comp. Geom., 1998
• Campagna et al., Directed Edges - A Scalable Representation for

Triangle Meshes, Journal of Graphics Tools 4(3), 1998
• Botsch et al., OpenMesh - A generic and efficient polygon mesh data

structure, OpenSG Symp. 2002

TODO

!74

Learn the terms
and notations

Next Time

!75

• Explicit & Implicit Surfaces

• Exercise 1: Getting Started with Mesh Processing

http://cs599.hao-li.com

Thanks!

!76

http://cs599.hao-li.com

