
CSCI 420: Computer Graphics

Hao Li
http://cs420.hao-li.com

Fall 2018

8.2 Spatial Data Structures

 1

http://cs420.hao-li.com

Ray Tracing Acceleration

• Faster intersections
- Faster ray-object intersections

• Object bounding volume
• Efficient intersections

- Fewer ray-object intersections
• Hierarchical bounding volumes (boxes, spheres)
• Spatial data structures
• Directional techniques

• Fewer rays
- Adaptive tree-depth control
- Stochastic sampling

• Generalized rays (beams, cones)

 2

Spatial Data Structures

 3

• Data structures to store geometric information
• Sample applications

- Collision detection
- Location queries
- Rendering

• Spatial data structures for ray tracing
- Object-centric data structures (bounding volumes)
- Space subdivision (grids, octrees, BSP trees)
- Speed-up of 10x, 100x, or more

Intersection of Rays and Implicit Surfaces

 4

• Wrap complex objects in simple ones
• Does ray intersect bounding box?

- No: does not intersect enclosed objects
- Yes: calculate intersection with enclosed objects

• Common types:

Axis-aligned
Bounding

Box (AABB)

Oriented
Bounding
Box (OBB)

Sphere Convex Hull 6-dop

Selection of Bounding Volumes

 5

• Effectiveness depends on:
- Probability that ray hits bounding volume, but not

enclosed objects (tight fit is better)
- Expense to calculate intersections with bounding

volume and enclosed objects
• Amortize calculation of bounding volumes
• Use heuristics

good

bad

Hierarchical Bounding Volumes

 6

• With simple bounding volumes, ray casting still requires O(n)
intersection tests

• Idea: use tree data structure
- Larger bounding volumes contain smaller ones etc.
- Sometimes naturally available (e.g. human figure)
- Sometimes difficult to compute

• Often reduces complexity to O(log(n))

Ray Intersection Algorithm

 7

• Recursively descend tree
• If ray misses bounding volume, no intersection
• If ray intersects bounding volume, recurse with enclosed

volumes and objects
• Maintain near and far bounds to prune further
• Overall effectiveness depends on model and constructed

hierarchy

Uniform
Spatial Sub

Quadtree/Octree kd-tree BSP-tree

Spatial Subdivision

 8

• Bounding volumes enclose objects, recursively
• Alternatively, divide space (as opposed to objects)
• For each segment of space, keep a list of intersecting

surfaces or objects
• Basic techniques:

Grids

 9

• 3D array of cells (voxels) that tile space
• Each cell points to all intersecting surfaces
• Intersection algorithm steps from cell to cell

Assessment of Grids

 10

• Poor choice when world is non-homogeneous
• Grid resolution:

- Too small: too many surfaces per cell
- Too large: too many empty cells to traverse
- Can use algorithms like Bresenham’s  

for efficient traversal
• Non-uniform spatial subdivision more flexible
 - Can adjust to objects that are present

Outline

 11

• Hierarchical Bounding Volumes
• Regular Grids
• Octrees
• BSP Trees

Quadtrees

• Generalization of binary trees in 2D
- Node (cell) is a square
- Recursively split into 4 equal sub-squares
- Stop subdivision based on number of objects

• Ray intersection has to traverse quadtree
• More difficult to step to next cell

 12

Octrees

• Generalization of quadtree in 3D
• Each cell may be split into 8 equal sub-cells
• Internal nodes store pointers to children
• Leaf nodes store list of surfaces
• Adapts well to non-homogeneous scenes

 13

Assessment for Ray Tracing

 14

• Grids
- Easy to implement
- Require a lot of memory
- Poor results for non-homogeneous scenes

• Octrees
- Better on most scenes (more adaptive)

• Alternative: nested grids
• Spatial subdivision expensive for animations
• Hierarchical bounding volumes

- Natural for hierarchical objects
- Better for dynamic scenes

Other Spatial Subdivision Techniques

 15

• Relax rules for quadtrees and octrees
• k-dimensional tree (k-d tree)

- Split at arbitrary interior point
- Split one dimension at a time

• Binary space partitioning tree (BSP tree)
- In 2 dimensions, split with any line
- In k dims. split with k-1 dimensional hyperplane
- Particularly useful for painter’s algorithm
- Can also be used for ray tracing

Outline

 16

• Hierarchical Bounding Volumes
• Regular Grids
• Octrees
• BSP Trees

BSP Trees

 17

• Split space with any line (2D) or plane (3D)
• Applications

- Painters algorithm for hidden surface removal
- Ray casting

• Inherent spatial ordering given viewpoint
- Left subtree: in front, right subtree: behind

• Problem: finding good space partitions
- Proper ordering for any viewpoint
- How to balance the tree

Building a BSP Tree

 18

• Use hidden surface removal as intuition
• Using line 1 or line 2 as root is easy

Line 2 Line 3

Line 1

Viewpoint

1
1

2

3

B A C D

a BSP tree
using 2 as root

A

B

D

C

3 2

the subdivision
of space it implies

Splitting of Surfaces

 19

• Using line 3 as root requires splitting

Building a Good Tree

 20

• Naive partitioning of n polygons yields O(n3) polygons (in 3D)
• Algorithms with O(n2) increase exist

- Try all, use polygon with fewest splits
- Do not need to split exactly along polygon planes

• Should balance tree
- More splits allow easier balancing
- Rebalancing?

Painter’s Algorithm with BSP Trees

 21

• Building the tree
- May need to split some polygons
- Slow, but done only once

• Traverse back-to-front or front-to-back
- Order is viewer-direction dependent
- What is front and what is back of each line changes
- Determine order on the fly

Details of Painter’s Algorithm

 22

• Each face has form Ax + By + Cz + D
• Plug in coordinates and determine

- Positive: front side
- Zero: on plane
- Negative: back side

• Back-to-front: inorder traversal, farther child first
• Front-to-back: inorder traversal, near child first
• Do backface culling with same sign test
• Clip against visible portion of space (portals)

Clipping With Spatial Data Structures

 23

• Accelerate clipping
 - Goal: accept or reject whole sets of objects
 - Can use an spatial data structures

• Scene should be mostly fixed
 - Terrain fly-through
 - Gaming

Data Structure Demos

 24

• BSP Tree construction
http://symbolcraft.com/graphics/bsp/index.html 

• KD Tree construction
http://donar.umiacs.umd.edu/quadtree/points/kdtree.html

http://donar.umiacs.umd.edu/quadtree/points/kdtree.html

Real-Time and Interactive Ray Tracing

 25

• Interactive ray tracing via space subdivision
http://www.cs.utah.edu/~reinhard/egwr/ 
• State of the art in interactive ray tracing
http://www.cs.utah.edu/~shirley/irt/

http://www.cs.utah.edu/~shirley/irt/

Summary

 26

• Hierarchical Bounding Volumes
• Regular Grids
• Octrees
• BSP Trees

