CSCI 420: Computer Graphics

8.1 Geometric Queries for
 Ray Tracing

Hao Li
http://cs420.hao-li.com

Outline

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric coordinates

Outline

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric coordinates

Ray-Surface Intersections

- Necessary in ray tracing
- General parametric surfaces
- General implicit surfaces

- Specialized analysis for special surfaces
- Spheres
- Planes
- Polygons
- Quadrics

Generating Rays

- Ray in parametric form
- Origin $\mathbf{p}_{0}=\left[\begin{array}{lll}x_{0} & y_{0} & z_{0}\end{array}\right]^{\mathrm{T}}$
- Direction d=[$\left.\begin{array}{lll}x_{\mathrm{d}} & y_{\mathrm{d}} & z_{\mathrm{d}}\end{array}\right]^{\mathrm{T}}$
- Assume d is normalized: $x_{\mathrm{d}} \cdot x_{\mathrm{d}}+y_{\mathrm{d}} \cdot y_{\mathrm{d}}+z_{\mathrm{d}} \cdot z_{\mathrm{d}}=1$
- Ray $\mathbf{p}(t)=\mathbf{p}_{0}+\mathbf{d} t$ for $t>0$

Intersection of Rays and Parametric Surfaces

- Ray in parametric form
- Origin $\mathbf{p}_{0}=\left[\begin{array}{lll}x_{0} & y_{0} & z_{0}\end{array}\right]^{\mathrm{T}}$
- Direction d=[$\left.\begin{array}{lll}x_{\mathrm{d}} & y_{\mathrm{d}} & z_{\mathrm{d}}\end{array}\right]^{\mathrm{T}}$
- Assume d is normalized: $x_{\mathrm{d}} \cdot x_{\mathrm{d}}+y_{\mathrm{d}} \cdot y_{\mathrm{d}}+z_{\mathrm{d}} \cdot z_{\mathrm{d}}=1$
- Ray $\mathbf{p}(t)=\mathbf{p}_{0}+\mathbf{d} t$ for $t>0$
- Surface in parametric form
- Points $\mathbf{q}=\mathbf{g}(u, v)=[x(u, v), y(u, v), z(u, v)]$

- Solve $\mathbf{p}_{0}+\mathbf{d} t=\mathbf{g}(u, v)$
- Three equations in three unknowns (t, u, v)
- Possible bounds on u, v

Intersection of Rays and Implicit Surfaces

- Ray in parametric form
- Origin $\mathbf{p}_{0}=\left[\begin{array}{lll}x_{0} & y_{0} & z_{0}\end{array}\right]^{\mathrm{T}}$
- Direction d=[$\left.\begin{array}{lll}x_{\mathrm{d}} & y_{\mathrm{d}} & z_{\mathrm{d}}\end{array}\right]^{\mathrm{T}}$
- Assume d is normalized: $x_{\mathrm{d}} \cdot x_{\mathrm{d}}+y_{\mathrm{d}} \cdot y_{\mathrm{d}}+z_{\mathrm{d}} \cdot z_{\mathrm{d}}=1$
- Ray $\mathbf{p}(t)=\mathbf{p}_{0}+\mathbf{d} t$ for $t>0$
- Implicit surface
- All points \mathbf{q} such that $f(\mathbf{q})=0$
- Substitute ray equation for $\mathbf{q}: \quad f\left(\mathbf{p}_{0}+\mathbf{d} t\right)=0$

- Solve for t (univariate root finding)
- Closed form if possible, otherwise approximation

Outline

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric coordinates

Ray-Sphere Intersection I

- Define sphere by
- Center $\mathbf{c}=\left[\begin{array}{lll}x_{\mathrm{c}} & y_{\mathrm{c}} & z_{\mathrm{c}}\end{array}\right]^{\mathrm{T}}$
- Radius r

- Implicit surface $f(\mathbf{q})=\left(x-x_{\mathrm{c}}\right)^{2}+\left(y-y_{\mathrm{c}}\right)^{2}+\left(z-z_{\mathrm{c}}\right)^{2}-r^{2}=0$
- Plug in ray equations for x, y, z

$$
x=x_{0}+x_{\mathrm{d}} t, \quad y=y_{0}+y_{\mathrm{d}} t, \quad z=z_{0}+z_{\mathrm{d}} t
$$

- Obtain a scalar equation for t

$$
\left(x_{0}+x_{\mathrm{d}} t-x_{\mathrm{c}}\right)^{2}+\left(y_{0}+y_{\mathrm{d}} t-y_{\mathrm{c}}\right)^{2}+\left(z_{0}+z_{\mathrm{d}} t-z_{\mathrm{c}}\right)^{2}-r^{2}=0
$$

Ray-Sphere Intersection II

- Simplify to $a t^{2}+b t+c=0$
where

$$
\begin{gathered}
a=x_{d}^{2}+y_{d}^{2}+z_{d}^{2}=1 \quad \text { since }|d|=1 \\
b=2\left(x_{d}\left(x_{0}-x_{c}\right)+y_{d}\left(y_{0}-y_{c}\right)+z_{d}\left(z_{0}-z_{c}\right)\right) \\
c=\left(x_{0}-x_{c}\right)^{2}+\left(y_{0}-y_{c}\right)^{2}+\left(z_{0}-z_{c}\right)^{2}-r^{2}
\end{gathered}
$$

- Solve to obtain t_{0}, t_{1}

$$
t_{0,1}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2}
$$

- Check if $t_{0}, t_{1}>0$. Return $\min \left(t_{0}, t_{1}\right)$

Ray-Sphere Intersection III

- For shading (e.g., Phong model), calculate unit normal

$$
n=\frac{1}{r}\left[\begin{array}{lll}
\left(x_{i}-x_{c}\right) & \left(y_{i}-y_{c}\right) & \left(z_{i}-z_{c}\right)
\end{array}\right]^{T}
$$

- Negate if ray originates inside the sphere!
- Note possible problems with roundoff errors

Simple Optimizations

- Factor common subexpressions
- Compute only what is necessary
- Calculate $b^{2}-4 a c$, abort if negative
- Compute normal only for closest intersection
- Other similar optimizations

Ray-Quadric Intersection

- Quadric $f(\mathbf{p})=f(x, y, z)=0$, where f is polynomial of order 2
- Sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder
- Closed form solution as for sphere
- Combine with CSG

Ray-Polygon Intersection I

- Assume planar polygon in 3D

1. Intersect ray with plane containing polygon
2. Check if intersection point is inside polygon

- Plane
- Implicit form: $a \cdot x+b \cdot y+c \cdot z+d=0$
- Unit normal: $\quad \mathbf{n}=\left[\begin{array}{lll}a & b & c\end{array}\right]^{\mathrm{T}}$ with $a^{2}+b^{2}+c^{2}=1$

Ray-Polygon Intersection II

- Substitute t to obtain intersection point in plane

$$
a\left(x_{0}+x_{d} t\right)+b\left(y_{0}+y_{d} t\right)+c\left(z_{0}+z_{d} t\right)+d=0
$$

- Solve and rewrite using dot product

$$
t=\frac{-\left(a x_{0}+b y_{0}+c z_{0}+d\right)}{a x_{d}+b y_{d}+c z_{d}}=\frac{-\left(n \cdot p_{0}+d\right)}{n \cdot d}
$$

- If $n \cdot d=0$, no intersection (ray parallel to plane)
- If $t \leq 0$, the intersection is behind ray origin

Test if point inside polygon

- Use even-odd rule or winding rule
- Easier if polygon is in 2D (project from 3D to 2D)
- Easier for triangles (tessellate polygons)

Point-in-triangle testing

1. Project the point and triangle onto a plane

- Pick a plane not perpendicular to triangle (such a choice always exists)
- $x=0, y=0$, or $z=0$

2. Then, do the 2D test in the plane, by computing barycentric coordinates (follows next)

Outline

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric coordinates

Interpolated Shading for Ray Tracing

- Assume we know normals at vertices
- How do we compute normal of interior point?
- Need linear interpolation between 3 points
- Barycentric coordinates

Barycentric Coordinates in 1D

- Linear interpolation

$$
\begin{aligned}
& \mathbf{p}(t)=(1-t) \mathbf{p}_{1}+t \mathbf{p}_{2}, 0 \leq t \leq 1 \\
& \mathbf{p}=\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2}, \alpha+\beta=1 \\
& \mathbf{p} \text { is between } \mathbf{p}_{1} \text { and } \mathbf{p}_{2} \text { iff } 0 \leq \alpha, \beta \leq 1
\end{aligned}
$$

- Geometric intuition
- Weigh each vertex by ratio of distances from ends

- α, β are called barycentric coordinates

Barycentric Coordinates in 2D

- Now we have 3 points instead of 2

- Define 3 barycentric coordinates α, β, γ
- $\mathbf{p}=\alpha \mathbf{p}_{1}+\beta \mathbf{p}_{2}+\gamma \mathbf{p}_{3}$
- \mathbf{p} inside triangle iff $0 \leq \alpha, \beta, \gamma \leq 1, \alpha+\beta+\gamma=1$
- How do we calculate α, β, γ ?

Barycentric Coordinates for Triangle

- Coordinates are ratios of triangle areas

$$
\begin{aligned}
& \alpha=\operatorname{Area}\left(\mathbf{p p}_{2} \mathbf{p}_{3}\right) / \operatorname{Area}\left(\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3}\right) \\
& \beta=\operatorname{Area}\left(\mathbf{p}_{1} \mathbf{p} \mathbf{p}_{3}\right) / \operatorname{Area}\left(\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3}\right) \\
& \gamma=\operatorname{Area}\left(\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}\right) / \operatorname{Area}\left(\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3}\right)=1-\alpha-\beta
\end{aligned}
$$

- Areas in these formulas should be signed
- Clockwise (-) or anti-clockwise (+) orientation of the triangle
- Important for point-in-triangle test

Compute Triangle Area in 3D

- Use cross product
- Parallelogram formula
- $\operatorname{Area}(\boldsymbol{A B C})=(1 / 2)|(\boldsymbol{B}-\boldsymbol{A}) \times(\boldsymbol{C}-\boldsymbol{A})|$

- How to get correct sign for barycentric coordinates?
- Compare directions of cross product $(\boldsymbol{B}-\boldsymbol{A}) \times(\boldsymbol{C}-\boldsymbol{A})$ for triangles $\mathbf{p} \mathbf{p}_{2} \mathbf{p}_{3} \vee S \mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3}$, etc. (either 0 (sign +) or 180 deg (sign-) angle)
- Easier alternative: project to 2D, use 2D formula (projection to 2D preserves barycentric coordinates)

Compute Triangle Area in 2D

- Suppose we project the triangle $\boldsymbol{A B C}$ to $\boldsymbol{x}-\boldsymbol{y}$ plane
- Area of the projected triangle in 2D with the correct sign:

$$
(1 / 2)\left(\left(b_{x}-a_{x}\right)\left(c_{y}-a_{y}\right)-\left(c_{x}-a_{x}\right)\left(b_{y}-a_{y}\right)\right)
$$

Outline

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric coordinates

http://cs420.hao-li.com

Thanks!

