CSCI 420: Computer Graphics

7.1 Rasterization

Hao Li

Rendering Pipeline

compute vertex attributes, e.g. evaluate lighting model to compute vertex color
rasterize triangles and interpolate vertex attributes

Outline

- Scan Conversion for Lines
- Scan Conversion for Polygons
- Antialiasing

Rasterization (scan conversion)

- Final step in pipeline: rasterization
- From screen coordinates (float) to pixels (int)
- Writing pixels into frame buffer
- Separate buffers:
- depth (z-buffer),
- display (frame buffer),
- shadows (stencil buffer),
- blending (accumulation buffer)

Rasterizing a line

Digital Differential Analyzer (DDA)

- Represent line as

$$
y=m x+h \quad \text { where } \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}
$$

- Then, if $\Delta x=1$ pixel, we have $\Delta y=m \Delta x=m$

		$\left(x_{2}, y_{2}\right)$				
					$D y$	
		$\left(x_{1}, y_{1}\right)$				
		$-D x$				

Digital Differential Analyzer

- Assume write_pixel(int x, int y, int value)

```
for (i = x1; i <= x2; i++)
{
    y += m;
    write_pixel(i, round(y), color);
}
```

- Problems:

- Requires floating point addition
- Missing pixels with steep slopes:
slope restriction needed

Digital Differential Analyzer (DDA)

- Assume $0 \leq m \leq 1$
- Exploit symmetry
- Distinguish special cases

But still requires
floating point additions!

Bresenham's Algorithm I

- Eliminate floating point addition from DDA
- Assume again $0 \leq m \leq 1$
- Assume pixel centers halfway between integers

Bresenham's Algorithm II

- Decision variable $a-b$
- If $a-b>0$ choose lower pixel
- If $a-b \leq 0$ choose higher pixel
- Goal: avoid explicit computation of $a-b$
- Step 1: re-scale $d=\left(x_{2}-x_{1}\right)(a-b)=\Delta x(a-b)$
- d is always integer

Bresenham's Algorithm III

- Compute d at step $k+1$ from d at step k !
- Case: j did not change $\left(d_{k}>0\right)$
- a decreases by m, b increases by m
$-(a-b)$ decreases by $2 m=2\left(\frac{\Delta y}{\Delta x}\right)$
- $\Delta x(a-b)$ decreases by $2 \Delta y$

$$
i-\frac{1}{2} \quad i+\frac{1}{2} \quad i+\frac{3}{2}
$$

$j+\frac{3}{2}$
$j+\frac{1}{2}$
$j-\frac{1}{2}$

$$
i-\frac{1}{2} \quad i+\frac{1}{2} \quad i+\frac{3}{2}
$$

Bresenham's Algorithm IV

- Case: j did change ($d_{k} \leq 0$)
- a decreases by $m-1, b$ increases by $m-1$
- $(a-b)$ decreases by $2 m-2=2\left(\frac{\Delta y}{\Delta x}-1\right)$
- $\Delta x(a-b)$ decreases by $2(\Delta y-\Delta x)$

Bresenham's Algorithm V

- So $d_{k+1}=d_{k}-2 \Delta y$ if $d_{k}>0$
- And $d_{k+1}=d_{k}-2(\Delta y-\Delta x)$ if $d_{k} \leq 0$
- Final (efficient) implementation:
void draw_line(int $x 1$, int $y 1$, int $x 2$, int $y 2)$ \{ int $x, y=y 1$;
int $d x=2 *(x 2-x 1)$, $d y=2^{*}(y 2-y 1)$; int $d y d x=d y-d x, D=(d y-d x) / 2$;
for ($\mathrm{x}=\mathrm{x} 1$; $\mathrm{x}<=\mathrm{x} 2$; $\mathrm{x}++$) $\{$ write_pixel(x, y, color);
if $(\mathrm{D}>0) \mathrm{D}-=\mathrm{dy}$;
else \{y++; D -= dydx;\}
\}
\}

Bresenham's Algorithm VI

- Need different cases to handle m > 1
- Highly efficient
- Easy to implement in hardware and software
- Widely used

Outline

- Scan Conversion for Lines
- Scan Conversion for Polygons
- Antialiasing

Scan Conversion of Polygons

- Multiple tasks:
- Filling polygon (inside/outside)
- Pixel shading (color interpolation)
- Blending (accumulation, not just writing)
- Depth values (z-buffer hidden-surface removal)
- Texture coordinate interpolation (texture mapping)
- Hardware efficiency is critical
- Many algorithms for filling (inside/outside)
- Much fewer that handle all tasks well

Filling Convex Polygons

- Find top and bottom vertices
- List edges along left and right sides
- For each scan line from bottom to top
- Find left and right endpoints of span, xl and xr
- Fill pixels between xl and xr
- Can use Bresenham's algorithm to update xl and xr

Concave Polygons: Odd-Even Test

- Approach 1: odd-even test
- For each scan line
- Find all scan line/polygon intersections
- Sort them left to right
- Fill the interior spans between intersections
- Parity rule: inside after an odd number of crossings

Edge vs Scan Line Intersections

- Brute force: calculate intersections explicitly
- Incremental method (Bresenham's algorithm)
- Caching intersection information
- Edge table with edges sorted by ymin
- Active edges, sorted by x-intersection, left to right
- Process image from smallest ymin up

Concave Polygons: Tessellation

- Approach 2: divide non-convex, non-flat, or non-simple polygons into triangles
- OpenGL specification
- Need accept only simple, flat, convex polygons
- Tessellate explicitly with tessellator objects
- Implicitly if you are lucky
- Most modern GPUs scan-convert only triangles

Flood Fill

- Draw outline of polygon
- Pick color seed
- Color surrounding pixels and recurse
- Must be able to test boundary and duplication
- More appropriate for drawing than rendering

Outline

- Scan Conversion for Lines
- Scan Conversion for Polygons
- Antialiasing

Aliasing

- Point sampling

Aliasing

- Moiré Patterns

Aliasing

- Artifacts created during scan conversion
- Inevitable (going from continuous to discrete)
- Aliasing (name from digital signal processing): we sample a continues image at grid points
- Effect
- Jagged edges
- Moire patterns

Moire pattern from
sandlotscience.com

More Aliasing

No antiallasing

Antialiasing for Line Segments

- Use area averaging at boundary

(a)

(b)

(c)

(d)
- (c) is aliased, magnified
- (d) is antialiased, magnified

Antialiasing by Supersampling

- Mostly for off-line rendering
(e.g., ray tracing)
- Render, say, $3 x 3$ grid of mini-pixels
- Average results using a filter
- Can be done adaptively
- Stop if colors are similar
- Subdivide at discontinuities

Supersampling Example

- Other improvements
- Stochastic sampling: avoid sample position repetitions
- Stratified sampling (jittering) :
perturb a regular grid of samples

Temporal Aliasing

- Sampling rate is frame rate (30 Hz for video)
- Example: spokes of wagon wheel in movies
- Solution: supersample in time and average
- Fast-moving objects are blurred
- Happens automatically with real hardware (photo and video cameras)
- Exposure time is important (shutter speed)
- Effect is called motion blur

Motion blur

Wagon Wheel Effect

Motion Blur Example

Achieve by stochastic sampling in time

T. Porter, Pixar, 1984

16 samples / pixel / timestep

Summary

- Scan Conversion for Polygons
- Basic scan line algorithm
- Convex vs concave
- Odd-even rules, tessellation
- Antialiasing (spatial and temporal)
- Area averaging
- Supersampling
- Stochastic sampling

Thanks!

