Fall 2018
CSCI 420: Computer Graphics

6.2 Bump Mapping
& Clipping

Hao LI
http://cs420.hao-li.com

http://cs420.hao-li.com

Bump Mapping

A long time ago, in 1978

... bump mapping was born

courtesy by ZBrush

For Meshes

vertex normal interpolation

|

smooth shading

What about
accessing textures to modify surface normails...

Goal

Use bump map normals given a parametrized mesh

Bump map normals
are defined in a local coordinate frame
iInside a triangle

We have positions, normals and parameters
of the triangle corners

How do we obtain coordinate frame?

Some Differential Geometry

2-Manifold Surface

Parameter Domain

10

Surface normals for shading

Surface

Parameter Domain

11

Surface normals obtained from tangent space

12

Tangent vectors inside triangles

Jp Jp
/\pi :PO—I_uiaM I ‘190

P>

©)

Po

13

Fully determined from positions and parameters

we are not interested in Pg

14

2Xx2 Matrix Inversion

0 d
Py (02 —vl)—P

P, — p1 = (u2 — uq) =

ou
_ op Jp
P; — p1 = (U3 — Ml)@ + (03 — Ul)%

_ (2 — uq)
- (v2 — 1)

correct if mesh is planar

15

Normals Interpolation (see Phong Shading)

n = ainy +any +azng from p =a1p1 +azp2 + a3p3

f

ns

np

16

Tangent vectors orthogonal to normal

+
n
"Prew aP;eW
U
op €- = _ i
v T ‘a‘s

17

We now have an inexpensive way to add
geometric details

Other bump mapping techniques exist

18

Further Readings

® “Simulation of Wrinkled Surfaces” [Blinn 1978]

® “Real-Time Rendering” [Akenine-Mdller and Haines 2002] p.166 — 177

19

Clipping

The Graphics Pipeline, Revisited

Vertices—p Transforme]—> Clipper I—» Projector I—» Rasterizer I—> Pixels

Must eliminate objects that are outside
of viewing frustum

Clipping: object space (eye coordinates)

Scissoring: image space (pixels in frame buffer)
- most often less etfticient than clipping

We will first discuss 2D clipping (for simplicity)
- OpenGL uses 3D clipping

21

2D Clipping Problem

22

Clipping Against a Frustum

 (General case of frustum (truncated pyramid)

-

image plane o
near

* Clipping is tricky because of frustum shape

clipped line
AN

far

23

Perspective Normalization

o Solution:
- Implement perspective projection by perspective
normalization and orthographic projection
- Perspective normalization is a homogeneous transtormation

y clipped line
A

p _ _ A y
clipped line

/ X

I ARt L
/Q far

L4 > Z

24

image plane

The Normalized Frustum

» OpenGL uses -1 =x,y,z < 1 (others possible)
e Clip against resulting cube

» Clipping against arbitrary (programmer-specified) planes
requires more general algorithms and is more expensive

25

The Viewport Transformation

e [ransformation sequence again:

1.

& @ & @ W

Camera: From object coordinates to eye coords
Perspective normalization: to clip coordinates
Clipping

Perspective division: to normalized device coords
Orthographic projection (setting zp = 0)

Viewport transtormation: to screen coordinates

* Viewport transformation can distort

- Solution: pass the correct window aspect ratio to

gluPerspective

20

Clipping

General: 3D object against cube

Simpler case:
- In 2D: line against

square or rectangle
- Later: polygon clipping

clipped line

>

27

Clipping Against Rectangle in 2D

e Line-segment clipping: modity endpoints of lines to lie
within clipping rectangle

28

Clipping Against Rectangle in 2D

 The result (in red)

29

Clipping Against Rectangle in 2D

e Could calcu

ate intersections of line segments with

clipping rec
- expensive,

rangle
due to floating point multiplications

and divisions

e« \Want to mini

and divisions

y=kx+n

mize the number of multiplications

30

Several practical algorithms for clipping

Main motivation:
Avoid expensive line-rectangle intersections
(which require tloating point divisions)

Cohen-Sutherland Clipping
Liang-Barsky Clipping

There are many more
(but many only work in 2D)

31

Cohen-Sutherland Clipping

* Clipping rectangle is an intersection of 4 half-planes

A
= s

 Encode results of four half-plane tests

A

ymaxy
Interior | =— ' .
. .,

|
Xmin Xmax

ymin

 Generalizes to 3 dimensions (6 half-planes)

32

Outcodes (Cohen-Sutherland)

e Divide space into 9 regions

* 4-bit outcode determined by comparisons (TBRL)

1001 : 1000
ymax - I
0001 0000
@
(wl . yl)
ymin - :
0101 i 0100

bn : max
1010 Y
b1 1Y < Ymin
------ 66'10 b2 - > Zlfma,m
" b3 T < Tmin
(72,Y2)

0110 O1 = outcode(x1, Y1)
O1 = outcode(x2,ys)

Xmin Xxmax

33

Cases for Outcodes

o Qutcomes: accept, reject, subdivide

1001 : 1000 : 1010 O1= O2=0000: accept entire
ymax e : H— segment
0001 0000 voTo O+1 & O2 = 0000: reject entire
| A segment
ymin oo : o .
- "~ 01=0000, Oz = 0000: subdivide
Xmin Xxmax .

_.» 01& O2=0000: subdivide

‘4
-
-
’4
-

bitwise AND

34

Cohen-Sutherland Subdivision

Pick outside endpoint (o = 0000)

Pick a crossed edge (0 = bob1b2bs and bk = 0)
Compute intersection of this line and this edge
Replace endpoint with intersection point

Restart with new line segment
- Outcodes of second point are unchanged

This algorithms converges

35

Liang-Barsky Clipping

o Start with parametric form for a line

p(
x(

¥(

04
(04

(04

)=(1—0o)p1 +apa, 0<a<l
): (1—06))61 — X9
) =(1—0o)y; + oy

L 4
L
L 4
L 4
| 4
L 4
-
4
. -
-

36

Liang-Barsky Clipping

 Compute all four intersections 1,2,3,4 with extended

clipping rectangle

» Often, no need to compute all four intersections

extended clipping rectangleé 3

37

Ordering of intersection points

(b)

* QOrder the intersection points
e Figure(a): 1> >a3>a2> a1 >0

e Figure (b): 1> >02>a3>a1>0

38

Liang-Barsky ldea

(b)

e |tis possible to clip already if one knows
the order of the four intersection points |

e Even if the actual intersections were not computed

 Can enumerate all ordering cases

39

Liang-Barsky efficiency improvements

e Efficiency improvement 1:
- Compute intersections one by one
- Often can reject before all four are computed

e Efficiency improvement 2:

- Equations for as, ao

Ymax = (1 — a3))’1 + 03Y2
Xmin — (1 — aZ)xl + 0 X)
~ Ymax — Y1 Xmin — X1

o3 = OhH =
Y2 —)1 A2 — X1

- Compare a3, a2 without floating-point division

40

Line-Segment Clipping Assessment

Cohen-Sutherland
- Works well if many lines can be rejected early
- Recursive structure (multiple subdivisions) is a drawback

Liang-Barsky
- Avoids recursive calls

- Many cases to consider (tedious, but not expensive)
- In general much faster than Cohen-Sutherland

41

Outline

Line-Segment Clipping
- Cohen-Sutherland
- Liang-Barsky

Polygon Clipping
- Sutherland-Hodgeman

Clipping in Three Dimensions

42

Polygon Clipping

 Convert a polygon into one or more polygons
* Their union is intersection with clip window

e Alternatively, we can first tesselate concave polygons
(OpenGL supported)

43

Concave Polygons

 Approach 1: clip, and then join pieces to a single polygon
- often difficult to manage

i

(2) (b)
 Approach 2: tesselate and clip triangles

-

<] Y

——

- this Is the common solution

<[

44

Sutherland-Hodgeman (part 1)

o Subproblem:
- Input: polygon (vertex list) and single clip plane
- QOutput: new (clipped) polygon (vertex list)

* Apply once for each clip plane
- 4 In two dimensions

- 6 In three dimensions
- Can arrange in pipeline

clip clip

A Lef A Right
clip clip

Sutherland-Hodgeman (part 2)

e o clip vertex list (polygon) against a half-plane:

- Then loop throug

N list, testing

» In-to-In: outpu

L vertex

- Test first vertex. Output it inside, otherwise skip.

ransitions

» In-to-out: output intersection

» out-to-In: output intersection and vertex

» OUut-to-out: NO output

- Will output clipped polygon as vertex list

 May need some cleanup in concave case

 Can combine with Liang-Barsky idea

46

Other Cases and Optimizations

Curves and surfaces
- Do it analytically it possible

- Otherwise, approximate curves / surfaces by
ines and polygons
Bounding boxes

- BEasy to calculate and maintain

- Sometimes big savings %

(a) (b)

47

Outline

Line-Segment Clipping
- Cohen-Sutherland
- Liang-Barsky

Polygon Clipping
- Sutherland-Hodgeman

Clipping in Three Dimensions

48

Clipping Against Cube

e Derived from earlier algorithms

* Can allow right parallelepiped

(X9, ¥g» 25)
f'(
y
A (x1’ yly Zl) - 4""‘ T (xmax’ Y max’
/ ~
/
(xmjn’ Y min? ijn’)—

¥

4

ma.x)

49

Cohen-Sutherland in 3D

Use 6 bits in outcode

- D4. Z > Zmax 0110
0 01

~BE. 2 € Zhin Jug
0

001
Other calculations 000221 &
N
O0g ‘%‘
as before 101001 & ‘:3

50

Liang-Barsky in 3D

Add equation z(a) = (1 — a)z1 + azs
Solve, for po in plane and normal n:
p(a)=(l—a)p+oap>
n-(p(a)—po)=0
Yields
o — n-(po—pi)
n-(p2—p1)

Optimizations as for Liang-Barsky in 2D

51

Summary: Clipping

* Clipping line segments to rectangle or cube
- Avoid expensive multiplications and divisions
- Cohen-Sutherland or Liang-Barsky

e Polygon clipping
- Sutherland-Hodgeman pipeline

e Clipping in 3D
- essentially extensions of 2D algorithms

52

Next Time

e Scan conversion
* Anti-aliasing

e Other pixel-level operations

53

http://cs420.hao-li.com

54

http://cs420.hao-li.com

