CSCI 420: Computer Graphics

6.2 Bump Mapping

\& Clipping

Hao Li

Bump Mapping

A long time ago, in 1978

... bump mapping was born

For Meshes

vertex normal interpolation

What about accessing textures to modify surface normals...

Goal

Use bump map normals given a parametrized mesh

Bump map normals are defined in a local coordinate frame inside a triangle

We have positions, normals and parameters of the triangle corners

How do we obtain coordinate frame?

Some Differential Geometry

Surface normals for shading

Surface normals obtained from tangent space

Tangent vectors inside triangles

Fully determined from positions and parameters

we are not interested in \mathbf{p}_{0}

$$
\begin{aligned}
& \mathbf{p}_{2}-\mathbf{p}_{1}=\left(u_{2}-u_{1}\right) \frac{\partial \mathbf{p}}{\partial u}+\left(v_{2}-v 1\right) \frac{\partial \mathbf{p}}{\partial v} \\
& \mathbf{p}_{3}-\mathbf{p}_{1}=\left(u_{3}-u_{1}\right) \frac{\partial \mathbf{p}}{\partial u}+\left(v_{3}-v 1\right) \frac{\partial \mathbf{p}}{\partial v}
\end{aligned}
$$

2x2 Matrix Inversion

$$
\begin{gathered}
\mathbf{p}_{2}-\mathbf{p}_{1}=\left(u_{2}-u_{1}\right) \frac{\partial \mathbf{p}}{\partial u}+\left(v_{2}-v 1\right) \frac{\partial \mathbf{p}}{\partial v} \\
\mathbf{p}_{3}-\mathbf{p}_{1}=\left(u_{3}-u_{1}\right) \frac{\partial \mathbf{p}}{\partial u}+\left(v_{3}-v 1\right) \frac{\partial \mathbf{p}}{\partial v} \\
\downarrow \\
{\left[\begin{array}{ll}
\mathbf{p}_{2}-\mathbf{p}_{1} & \mathbf{p}_{3}-\mathbf{p}_{1}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial \mathbf{p}}{\partial u} & \frac{\partial \mathbf{p}}{\partial v}
\end{array}\right]\left[\begin{array}{cc}
\left(u_{2}-u_{1}\right) & \left(u_{3}-u_{1}\right) \\
\left(v_{2}-v_{1}\right) & \left(v_{3}-v_{1}\right)
\end{array}\right]}
\end{gathered}
$$

correct if mesh is planar

Normals Interpolation (see Phong Shading)

$$
\mathbf{n}=\alpha_{1} \mathbf{n}_{1}+\alpha_{2} \mathbf{n}_{2}+\alpha_{3} \mathbf{n}_{3} \quad \text { from } \quad \mathbf{p}=\alpha_{1} \mathbf{p}_{1}+\alpha_{2} \mathbf{p}_{2}+\alpha_{3} \mathbf{p}_{3}
$$

Tangent vectors orthogonal to normal

We now have an inexpensive way to add geometric details

Other bump mapping techniques exist

Further Readings

- "Simulation of Wrinkled Surfaces" [Blinn 1978]
- "Real-Time Rendering" [Akenine-Möller and Haines 2002] p.166-177

Clipping

The Graphics Pipeline, Revisited

- Must eliminate objects that are outside of viewing frustum
- Clipping: object space (eye coordinates)
- Scissoring: image space (pixels in frame buffer)
- most often less efficient than clipping
- We will first discuss 2D clipping (for simplicity)
- OpenGL uses 3D clipping

2D Clipping Problem

Clipping Against a Frustum

- General case of frustum (truncated pyramid)

- Clipping is tricky because of frustum shape

Perspective Normalization

- Solution:
- Implement perspective projection by perspective normalization and orthographic projection
- Perspective normalization is a homogeneous transformation

The Normalized Frustum

- OpenGL uses $-1 \leq x, y, z \leq 1$ (others possible)
- Clip against resulting cube
- Clipping against arbitrary (programmer-specified) planes requires more general algorithms and is more expensive

The Viewport Transformation

- Transformation sequence again:

1. Camera: From object coordinates to eye coords
2. Perspective normalization: to clip coordinates
3. Clipping
4. Perspective division: to normalized device coords
5. Orthographic projection (setting $z_{p}=0$)
6. Viewport transformation: to screen coordinates

- Viewport transformation can distort
- Solution: pass the correct window aspect ratio to gluPerspective

Clipping

- General: 3D object against cube
- Simpler case:
- In 2D: line against square or rectangle
- Later: polygon clipping

Clipping Against Rectangle in 2D

- Line-segment clipping: modify endpoints of lines to lie within clipping rectangle

Clipping Against Rectangle in 2D

- The result (in red)

Clipping Against Rectangle in 2D

- Could calculate intersections of line segments with clipping rectangle
- expensive, due to floating point multiplications and divisions
- Want to minimize the number of multiplications and divisions

Several practical algorithms for clipping

- Main motivation:

Avoid expensive line-rectangle intersections
(which require floating point divisions)

- Cohen-Sutherland Clipping
- Liang-Barsky Clipping
- There are many more (but many only work in 2D)

Cohen-Sutherland Clipping

- Clipping rectangle is an intersection of 4 half-planes

- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)

Outcodes (Cohen-Sutherland)

- Divide space into 9 regions
- 4-bit outcode determined by comparisons (TBRL)

1001	1000	1010	$b_{0}: y>y_{\text {max }}$
$b_{1}: y<y_{\text {min }}$			

Cases for Outcodes

- Outcomes: accept, reject, subdivide

Cohen-Sutherland Subdivision

- Pick outside endpoint (0 = 0000)
- Pick a crossed edge ($0=b_{0} b_{1} b_{2} b_{3}$ and $b_{k} \neq 0$)
- Compute intersection of this line and this edge
- Replace endpoint with intersection point
- Restart with new line segment
- Outcodes of second point are unchanged
- This algorithms converges

Liang-Barsky Clipping

- Start with parametric form for a line

$$
\begin{aligned}
p(\alpha) & =(1-\alpha) p_{1}+\alpha p_{2}, \quad 0 \leq \alpha \leq 1 \\
x(\alpha) & =(1-\alpha) x_{1}+\alpha x_{2} \\
y(\alpha) & =(1-\alpha) y_{1}+\alpha y_{2}
\end{aligned}
$$

Liang-Barsky Clipping

- Compute all four intersections 1,2,3,4 with extended clipping rectangle
- Often, no need to compute all four intersections

Ordering of intersection points

- Order the intersection points
- Figure (a): $1>\alpha_{4}>\alpha_{3}>\alpha_{2}>\alpha_{1}>0$
- Figure (b): $1>\alpha_{4}>\alpha_{2}>\alpha_{3}>\alpha_{1}>0$

Liang-Barsky Idea

(a)

(b)

- It is possible to clip already if one knows the order of the four intersection points !
- Even if the actual intersections were not computed!
- Can enumerate all ordering cases

Liang-Barsky efficiency improvements

- Efficiency improvement 1:
- Compute intersections one by one
- Often can reject before all four are computed
- Efficiency improvement 2:
- Equations for α_{3}, α_{2}

$$
\begin{gathered}
y_{\max }=\left(1-\alpha_{3}\right) y_{1}+\alpha_{3} y_{2} \\
x_{\min }=\left(1-\alpha_{2}\right) x_{1}+\alpha_{2} x_{2} \\
\alpha_{3}=\frac{y_{\max }-y_{1}}{y_{2}-y_{1}} \quad \alpha_{2}=\frac{x_{\min }-x_{1}}{x_{2}-x_{1}}
\end{gathered}
$$

- Compare α_{3}, α_{2} without floating-point division

Line-Segment Clipping Assessment

- Cohen-Sutherland
- Works well if many lines can be rejected early
- Recursive structure (multiple subdivisions) is a drawback
- Liang-Barsky
- Avoids recursive calls
- Many cases to consider (tedious, but not expensive)
- In general much faster than Cohen-Sutherland

Outline

- Line-Segment Clipping
- Cohen-Sutherland
- Liang-Barsky
- Polygon Clipping
- Sutherland-Hodgeman
- Clipping in Three Dimensions

Polygon Clipping

- Convert a polygon into one or more polygons
- Their union is intersection with clip window
- Alternatively, we can first tesselate concave polygons (OpenGL supported)

Concave Polygons

- Approach 1: clip, and then join pieces to a single polygon - often difficult to manage

(a)

(b)

- Approach 2: tesselate and clip triangles
- this is the common solution

Sutherland-Hodgeman (part 1)

- Subproblem:
- Input: polygon (vertex list) and single clip plane
- Output: new (clipped) polygon (vertex list)
- Apply once for each clip plane
- 4 in two dimensions
- 6 in three dimensions
- Can arrange in pipeline

Sutherland-Hodgeman (part 2)

- To clip vertex list (polygon) against a half-plane:
- Test first vertex. Output if inside, otherwise skip.
- Then loop through list, testing transitions
- In-to-in: output vertex
- In-to-out: output intersection
- out-to-in: output intersection and vertex
- out-to-out: no output
- Will output clipped polygon as vertex list
- May need some cleanup in concave case
- Can combine with Liang-Barsky idea

Other Cases and Optimizations

- Curves and surfaces
- Do it analytically if possible
- Otherwise, approximate curves / surfaces by lines and polygons
- Bounding boxes
- Easy to calculate and maintain
- Sometimes big savings

(a)

(b)

Outline

- Line-Segment Clipping
- Cohen-Sutherland
- Liang-Barsky
- Polygon Clipping
- Sutherland-Hodgeman
- Clipping in Three Dimensions

Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped

Cohen-Sutherland in 3D

- Use 6 bits in outcode
- $\mathrm{b}_{4}: ~ z>Z_{\text {max }}$
- $\mathrm{b}_{5}: \mathbf{z}<Z_{\text {min }}$
- Other calculations as before

Liang-Barsky in 3D

- Add equation $z(\alpha)=(1-\alpha) z_{1}+\alpha z_{2}$
- Solve, for $\mathbf{p o}_{0}$ in plane and normal \mathbf{n} :

$$
\begin{gathered}
p(\alpha)=(1-\alpha) p_{1}+\alpha p_{2} \\
n \cdot\left(p(\alpha)-p_{0}\right)=0
\end{gathered}
$$

- Yields

$$
\alpha=\frac{n \cdot\left(p_{0}-p_{1}\right)}{n \cdot\left(p_{2}-p_{1}\right)}
$$

- Optimizations as for Liang-Barsky in 2D

Summary: Clipping

- Clipping line segments to rectangle or cube
- Avoid expensive multiplications and divisions
- Cohen-Sutherland or Liang-Barsky
- Polygon clipping
- Sutherland-Hodgeman pipeline
- Clipping in 3D
- essentially extensions of 2D algorithms

Next Time

- Scan conversion
- Anti-aliasing
- Other pixel-level operations

Thanks!

