CSCI 420: Computer Graphics

5.1 Lighting and Shading

Hao Li

http://cs420.hao-li.com

Debunking Lunar Landing Conspiracies with Global Illumination

https://www.youtube.com/watch?v=09y AVYMEUs

Single Light Source for Global Illumination

https://www.youtube.com/watch?v=09y AVYMEUs

Lighting

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Global Illumination

- Ray tracing
- Radiosity
- Photon Mapping

Tobias R. Metoc

- Follow light rays through a scene
- Accurate, but expensive (off-line)

Raytracing Example

Martin Moeck, Siemens Lighting

Radiosity Example

Restaurant Interior. Guillermo Leal, Evolucion Visual

Local Illumination

- Approximate model
- Local interaction between light, surface, viewer
- Phong model (this lecture): fast, supported in OpenGL
- GPU shaders
- Pixar Renderman (offline)

Local Illumination

- Approximate model
- Local interaction between light, surface, viewer
- Color determined only based on surface normal, relative camera position and relative light position
-What effects does this ignore?

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Normal Vectors

- Must calculate and specify the normal vector
- Even in OpenGL!
- Two examples: plane and sphere

Normals of a Plane, Method I

- Method I: given by $a x+b y+c z+d=0$
- Let p_{0} be a known point on the plane
- Let p be an arbitrary point on the plane
- Recall: $u \cdot v=0$ if and only if u orthogonal to v
- $n \cdot\left(p-p_{0}\right)=n \cdot p-n \cdot p_{0}=0$
- Consequently $n_{0}=\left[\begin{array}{lll}a & b & c\end{array}\right]^{T}$
- Normalize to $n=\frac{n_{0}}{\left|n_{0}\right|}$

Normals of a Plane, Method II

- Method II: plane given by p_{0}, p_{1}, p_{2}
- Points must not be collinear
- Recall: $u \times v$ orthogonal to u and v
- $n_{0}=\left(p_{1}-p_{0}\right) \times\left(p_{2}-p_{0}\right)$
- Order of cross product determines orientation
- Normalize to $n=\frac{n_{0}}{\left|n_{0}\right|}$

Normals of Sphere

- Implicit Equation $f(x, y, z)=x^{2}+y^{2}+z^{2}-1=0$
- Vector form: $f(p)=p \cdot p-1=0$
- Normal given by gradient vector

$$
n_{0}=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right]=\left[\begin{array}{c}
2 x \\
2 y \\
2 z
\end{array}\right]=2 p
$$

- Normalize $\frac{n_{0}}{\left|n_{0}\right|}=\frac{2 p}{2}=p$

Reflected Vector

- Perfect reflection: angle of incident equals angle of reflection
- Also: l, n, and r lie in the same plane
- Assume $|l|=|n|=1$, guarantee $|r|=1$

$$
\begin{aligned}
& l \cdot n=\cos (\theta)=n \cdot r \\
& r=\alpha l+\beta n \\
& \text { Solution }: \alpha=-1 \text { and } \beta=2(l \cdot n) \\
& r=2(l \cdot n) n-l
\end{aligned}
$$

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Light Sources and Material Properties

- Appearance depends on
- Light sources, their locations and properties
- Material (surface) properties:

- Viewer position

Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
- Cut-off angle defines a cone of light
- Attenuation function (brighter in center)

Point Source

- Given by a point p_{0}
- Light emitted equally in all directions
- Intensity decreases with square of distance

$$
I \propto \frac{1}{\left|p-p_{0}\right|^{2}}
$$

Limitations of Point Sources

- Shading and shadows inaccurate
- Example: penumbra (partial "soft" shadow)
- Similar problems with highlights
- Compensate with attenuation

$$
\frac{1}{a+b q+c q^{2}}
$$

- Softens lighting

$$
\begin{aligned}
& q=\text { distance }\left|p-p_{0}\right| \\
& \quad a, b, c \text { constants }
\end{aligned}
$$

- Better with ray tracing
- Better with radiosity

Distant Light Source

- Given by a direction vector
- Simplifies some calculations
- In OpenGL:
- Point source $\left[\begin{array}{llll}x & y & z & 1\end{array}\right]^{T}$
- Distant source $\left[\begin{array}{llll}x & y & z & 0\end{array}\right]^{T}$

Spotlight

- Most complex light source in OpenGL
- Light still emanates from point
- Cut-off by cone determined by angle θ

Global Ambient Light

- Independent of light source
- Lights entire scene
- Computationally inexpensive
- Simply add $\left[\begin{array}{lll}G_{R} & G_{G} & G_{B}\end{array}\right]$ to every pixel on every object
- Not very interesting on its own

A cheap hack to make the scene brighter

Outline

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Phong Lighting

Phong Illumination Overview

- Calculate color for arbitrary point on surface
- Compromise between realism and efficiency
- Local computation (no visibility calculations)
- Basic inputs are material properties and l, n, v :
$l=$ unit vector to light source
$n=$ surface normal
$v=$ unit vector to viewer
$r=$ reflection of l at p
(determined by l and n)

Phong Illumination Overview

1. Start with global ambient light [$\left.\begin{array}{lll}G_{R} & G_{G} & G_{B}\end{array}\right]$
2. Add contributions from each light source
3. Clamp the final result to $[0,1]$

- Calculate each color channel (R,G,B) separately
- Light source contributions decomposed into
- Ambient reflection
- Diffuse reflection
- Specular reflection
- Based on ambient, diffuse, and specular lighting and material properties

Ambient Reflection

$$
I_{a}=k_{a} L_{a}
$$

- Intensity of ambient light is uniform at every point
- Ambient reflection coefficient k_{a} (material), $0 \leq \mathrm{k}_{\mathrm{a}} \leq 1$
- May be different for every surface and r,g,b
- Determines reflected fraction of ambient light
- $L_{a}=$ ambient component of light source (can be set to different value for each light source)
- Note: L_{a} is not a physically meaningful quantity

Diffuse Reflection

- Diffuse reflector scatters light
- Assume equally all direction
- Called Lambertian surface
- Diffuse reflection coefficient k_{d} (material), $0 \leq k_{d} \leq 1$
- Angle of incoming light is important

Lambert's Law

- Intensity depends on angle of incoming light.

(a)

(b)

Diffuse Light Intensity Depends On Angle Of Incoming Light

- Recall
$l=$ unit vector to light
$n=$ unit surface normal
$\theta=$ angle to normal
- $\cos (\theta)=l \cdot n$
- $I_{d}=k_{d} L_{d}(l \cdot n)$
- With attenuation:

$$
I_{d}=\frac{k_{d} L_{d}}{a+b q+c q^{2}}(l \cdot n) \quad \begin{aligned}
& q=\text { distance to light source } \\
& L_{d}=\text { diffuse component of light }
\end{aligned}
$$

Specular Reflection

- Specular reflection coefficient k_{s} (material), $0 \leq \mathrm{k}_{\mathrm{s}} \leq 1$
- Shiny surfaces have high specular coefficient
- Used to model specular highlights
- Does not give mirror effect (need other techniques)

specular reflection

specular highlights

Specular Reflection

- Recall
$v=$ unit vector to camera
$r=$ unit reflected vector $\phi=$ angle between v and r
- $\cos (\phi)=v \cdot r$
- $I_{s}=k_{s} L_{s}(\cos \phi)^{\alpha}$
- L_{s} is specular component of light

- α is shininess coefficient
- Can add distance term as well

Shininess Coefficient

- $I_{s}=k_{s} L_{s}(\cos \phi)^{\alpha}$
- α is the shininess coefficient

Higher agives narrower curves

Source:
Univ. of Calgary

Summary of Phong Model

- Light components for each color:
- Ambient $\left(L_{a}\right)$, diffuse $\left(L_{d}\right)$, specular $\left(L_{s}\right)$
- Material coefficients for each color:
- Ambient $\left(k_{a}\right)$, diffuse $\left(k_{d}\right)$, specular $\left(k_{s}\right)$
- Distance q for surface point from light source

$$
I=\frac{1}{a+b q+c q^{2}}\left(k_{d} L_{d}(l \cdot n)+k_{s} L_{s}(r \cdot v)^{\alpha}\right)+k_{a} L_{a}
$$

$l=$ unit vector to light $r=l$ reflected about n
$n=$ surface normal
$v=$ vector to viewer

Summary of Phong Model

BRDF

- Bidirectional Reflection Distribution Function
- Must measure for real materials
- Isotropic vs. anisotropic
- Mathematically complex
- Programmable pixel shading

Lighting properties of a human face were captured and face re-rendered;
Institute for Creative Technologies

Summary

- Global and Local Illumination
- Normal Vectors
- Light Sources
- Phong Illumination Model

Thanks!

