CSCI 420: Computer Graphics

4.1 Polygon Meshes and Implicit Surfaces

Hao Li

http://cs420.hao-li.com

Geometric Representations

triangle mesh

implicit surfaces / particles

volumetric

tetrahedºns

Modeling Complex Shapes

- An equation for a sphere is possible, but how about an equation for a telephone, or a face?
- Complexity is achieved using simple pieces

- polygons, parametric surfaces, or implicit surfaces
- Goals
- Model anything with arbitrary precision (in principle)
- Easy to build and modify
- Efficient computations (for rendering, collisions, etc.)
- Easy to implement (a minor consideration...)

What do we need from shapes in Computer Graphics?

- Local control of shape for modeling
- Ability to model what we need
- Smoothness and continuity
- Ability to evaluate derivatives
- Ability to do collision detection
- Ease of rendering

No single technique solves all problems!

Shape Representations

- Polygon Meshes
- Parametric Surfaces
- Implicit Surfaces

Polygon Meshes

- Any shape can be modeled out of polygons
- if you use enough of them...
- Polygons with how many sides?
- Can use triangles, quadrilaterals, pentagons, ... n-gons
- Triangles are most common
- When > 3 sides are used, ambiguity about what to do when polygon nonplanar, or concave, or self-intersecting
- Polygon meshes are built out of
- vertices (points)
- edges (line segments between vertices)
- faces (polygons bounded by edges)

Polygon Models in OpenGL

- for faceted shading
glNormal3fv(n);
glBegin(GL_POLYGONS); gIVertex3fv(vert1); gIVertex3fv(vert2); gIVertex3fv(vert3); glEnd();
- for smooth shading
glBegin(GL_POLYGONS); glNormal3fv(normal1); gIVertex3fv(vert1); glNormal3fv(normal2); gIVertex3fv(vert2); glNormal3fv(normal3); gIVertex3fv(vert3);
glEnd();

Normals

$\underbrace{v_{3}}_{v_{1}}$| v_{2} |
| :--- |
| $b=v_{2}-v_{1}$ |
| b |

- Triangle defines unique plane
- can easily compute normal

$$
n=\frac{a \times b}{\|a \times b\|}
$$

- depends on vertex orientation!
- clockwise order gives

$$
n^{\prime}=-n
$$

- Vertex normals less well defined
- can average face normals
- works for smooth surfaces
- but not at sharp corners (think of a cube)

Where Meshes Come From

- Model manually
- Write out all polygons
- Write some code to generate them
- Interactive editing: move vertices in space
- Acquisition from real objects
- 3D scanners, vision systems
- Generate set of points on the surface
- Need to convert to polygons

Mesh Data Structures

- How to store geometry \& connectivity?
- compact storage and file formats
- Efficient algorithms on meshes
- Time-critical operations
- All vertices/edges of a face
- All incident vertices/edges/faces of a vertex

Data Structures

Different Data Structures:

- Different topological data storage
- Most important ones are face and edge-based (since they encode connectivity)
- Design decision ~ memory/speed trade-off

Face Set (STL)

Face:

- 3 vertex positions

Triangles						
$\begin{array}{llll}\mathrm{X}_{11} & \mathrm{Y}_{11} & \mathrm{Z}_{11}\end{array}$	x_{12}	Y12	z_{12}	x_{13}	Y13	Z_{13}
$\begin{array}{llll}\mathrm{X}_{21} & \mathrm{Y}_{21} & \mathrm{Z}_{21}\end{array}$	X_{22}	Y22		X_{23}	Y23	Z_{23}
-••		-••			-••	
$\begin{array}{llll}\mathrm{X}_{\mathrm{F} 1} & \mathrm{Y}_{\mathrm{F} 1} & \mathrm{Z}_{\mathrm{F} 1}\end{array}$	$\mathrm{X}_{\mathrm{F} 2}$	YF2	$\mathrm{Z}_{\mathrm{F} 2}$	$\mathrm{X}_{\mathrm{F} 3}$	Yf3	$\mathrm{Z}_{\mathrm{F} 3}$

9*4 = 36 B/f (single precision) 72 B/v (Euler Poincaré)

No explicit connectivity

Shared Vertex (OBJ,OFF)

Indexed Face List:

- Vertex: position
- Face: Vertex Indices

Vertices
$\mathrm{x}_{1} \quad \mathrm{y}_{1} \quad \mathrm{z}_{1}$
\ldots
$\mathrm{x}_{\mathrm{V}} \quad \mathrm{yv}_{\mathrm{V}} \quad \mathrm{z}_{\mathrm{V}}$
:---:
i_{11}
\ldots
\ldots
$i_{\mathrm{F} 1}$

$12 B / v+12 B / f=36 B / v$
No explicit adjacency info

Face-Based Connectivity

Vertex:

- position (12B)
- 1 face (4B)

Face:

- 3 vertices (12B)
- 3 face neighbors (24B)

64 B/v
No edges: Special case handling for arbitrary polygons

Edges always have the same topological structure

Efficient handling of polygons with variable valence

(Winged) Edge-Based Connectivity

Vertex:

- position
- 1 edge

Edge:

- 2 vertices
- 2 faces
- 4 edges

120 B/v

Face:

- 1 edges

Edges have no orientation: special case handling for neighbors

Halfedge-Based Connectivity

Vertex:

- position
- 1 halfedge

Edge:

- 1 vertex
- 1 face
- 1, 2, or 3 halfedges

Face:

- 1 halfedge

96 to 144 B/v
Edges have orientation: Noruntime overhead due to arbitrary faces

Data Structures for Polygon Meshes

- Simplest (but dumb)
- float triangle[n][3][3]; (each triangle stores 3 (x, y, z) points)
- redundant: each vertex stored multiple times
- Vertex List, Face List
- List of vertices, each vertex consists of (x, y, z) geometric (shape) info only
- List of triangles, each a triple of vertex id's (or pointers) topological (connectivity, adjacency) info only

Fine for many purposes, but finding the faces adjacent to a vertex takes $O(F)$ time for a model with F faces. Such queries are important for topological editing.

- Fancier schemes:
- Store more topological info so adjacency queries can be answered in O(1) time.
- Winged-edge data structure - edge structures contain all topological info (pointers to adjacent vertices, edges, and faces).

A File Format for Polygon Models: OBJ

\# OBJ file for a $2 \times 2 \times 2$ cube v -1.0 1.0 1.0 - Vertex 1 v -1.0-1.0 1.0 - Vertex 2
v 1.0-1.0 1.0 - Vertex 3
v 1.01 .0 1.0-...
v -1.0 1.0-1.0
v -1.0-1.0-1.0
v 1.0-1.0-1.0
v 1.0 1.0-1.0
f 1234
f 8765
f 4378
f 5148
f 5621
f 2673

Syntax:
v $x y z$

- a vertex a (x,y,z)
f $v_{1} v_{2} \ldots v_{n}$ - a face with vertices $\mathrm{V}_{1} \mathrm{~V}_{2} \ldots \mathrm{~V}_{\mathrm{n}}$
\#anything - comment

How Many Polygons to Use?

100 triangles

Why Level of Detail?

- Different models for near and far objects
- Different models for rendering and collision detection
- Compression of data recorded from the real world
- We need automatic algorithms for reducing the polygon count without
- losing key features
- getting artifacts in the silhouette
- popping

Problems with Triangular Meshes?

- Need a lot of polygons to represent smooth shapes
- Need a lot of polygons to represent detailed shapes
- Hard to edit
- Need to move individual vertices
- Intersection test? Inside/outside test?

Shape Representations

- Polygon Meshes
- Parametric Surfaces
- Implicit Surfaces

Parametric Surfaces

$$
p(u, v)=[x(u, v), y(u, v), z(u, v)]
$$

- e.g. plane, cylinder, bicubic surface, swept surface

Bezier patch

Parametric Surfaces

$$
p(u, v)=[x(u, v), y(u, v), z(u, v)]
$$

- e.g. plane, cylinder, bicubic surface, swept surface

Utah teapot

Parametric Representation

Surface is the range of a function

$$
\mathbf{f}: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \mathcal{S}_{\Omega}=\mathbf{f}(\Omega)
$$

2D example: A Circle

$$
\begin{aligned}
& \mathbf{f}:[0,2 \pi] \rightarrow \mathbb{R}^{2} \\
& \mathbf{f}(t)=\binom{r \cos (t)}{r \sin (t)}
\end{aligned}
$$

Parametric Representation

Surface is the range of a function

$$
\mathbf{f}: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \mathcal{S}_{\Omega}=\mathbf{f}(\Omega)
$$

2D example: Island coast line

$$
\begin{aligned}
& \mathbf{f}:[0,2 \pi] \rightarrow \mathbb{R}^{2} \\
& \mathbf{f}(t)=\binom{?}{?}
\end{aligned}
$$

Piecewise Approximation

Surface is the range of a function

$$
\mathbf{f}: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad \mathcal{S}_{\Omega}=\mathbf{f}(\Omega)
$$

2D example: Island coast line

$$
\begin{aligned}
& \mathbf{f}:[0,2 \pi] \rightarrow \mathbb{R}^{2} \\
& \mathbf{f}(t)=\binom{?}{?}
\end{aligned}
$$

Polygonal Meshes

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O\left(h^{2}\right)$

Polygonal Meshes

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O\left(h^{2}\right)$
- Error inversely proportional to \#faces

Polygonal Meshes

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O\left(h^{2}\right)$
- Error inversely proportional to \#faces
- Arbitrary topology surfaces

Polygonal Meshes

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O\left(h^{2}\right)$
- Error inversely proportional to \#faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces

Polygonal Meshes

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O\left(h^{2}\right)$
- Error inversely proportional to \#faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling

Polygonal Meshes

Polygonal meshes are a good compromise

- Piecewise linear approximation \rightarrow error is $O\left(h^{2}\right)$
- Error inversely proportional to \#faces
- Arbitrary topology surfaces
- Piecewise smooth surfaces
- Adaptive sampling
- Efficient GPU-based rendering/processing

Parametric Surfaces

- Why better than polygon meshes?
- Much more compact
- More convenient to control --- just edit control points
- Easy to construct from control points
- What are the problems?
- Work well for smooth surfaces
- Must still split surfaces into discrete number of patches
- Rendering times are higher than for polygons
- Intersection test? Inside/outside test?

Shape Representations

- Polygon Meshes
- Parametric Surfaces
- Implicit Surfaces

Two Ways to Define a Circle

Parametric

$$
\begin{aligned}
& x=f(u)=r \cos (u) \\
& y=g(u)=r \sin (u)
\end{aligned}
$$

Implicit

$$
F(x, y)=x^{2}+y^{2}-r^{2}
$$

Implicit Surfaces

- well defined inside/outside
- polygons and parametric surfaces do not have this information
- Computing is hard: -implicit functions for a cube? telephone?
- Implicit surface: $F(x, y, z)=0$
- e.g. plane, sphere, cylinder, quadric, torus, blobby models sphere with radius r : $F(x, y, z)=x^{2}+y^{2}+z^{2}-r^{2}=0$
- terrible for iterating over the surface
- great for intersections, inside/outside test

Quadric Surfaces

$$
F(x, y, z)=a x^{2}+b y^{2}+c z^{2}
$$

$+2 f y z+2 h x y+2 p x+2 q y+2 r z+d$
$=0$

What Implicit Functions are Good For

Ray - Surface Intersection Test
Inside/Outside Test

Surfaces from Implicit Functions

- Constant Value Surfaces are called (depending on whom you ask):
- constant value surfaces
- level sets
- isosurfaces
- Nice Feature: you can add them! (and other tricks)
- this merges the shapes
- When you use this with spherical exponential potentials, it's called Blobs, Metaballs, or Soft Objects. Great for modeling animals.

Blobby Models

by Brian Wyvill, http://www.cpsc.ucalgary.ca/~blob/

How to draw implicit surfaces?

- It's easy to ray trace implicit surfaces
- because of that easy intersection test
- Volume Rendering can display them
- Convert to polygons: the Marching Cubes algorithm
- Divide space into cubes
- Evaluate implicit function at each cube vertex
- Do root finding or linear interpolation along each edge
- Polygonize on a cube-by-cube basis

Constructive Solid Geometry (CSG)

- Generate complex shapes with basic building blocks
- Machine an object - saw parts off, drill holes, glue pieces together

Constructive Solid Geometry (CSG)

union

> the merger of two objects into one
difference

the subtraction of one object from another

intersection

the portion common to both objects

Constructive Solid Geometry (CSG)

- Generate complex shapes with basic building blocks
- Machine an object - saw parts off, drill holes, glue pieces together
- This is sensible for objects that are actually made that way (human-made, particularly machined objects)

A CSG Train

Negative Objects

- Use point-by-point boolean functions
- remove a volume by using a negative object
- e.g. drill a hole by subtracting a cylinder

Inside(BLOCK-CYL) = Inside(BLOCK) And Not(Inside(CYL))

Set Operations

- UNION:

Inside(A) || Inside(B)
Join A and B

- INTERSECTION: Inside(A) \&\& Inside(B)

Chop off any part of A that sticks out of B

- SUBTRACTION: Inside(A) \&\& (! Inside(B))

Use B to Cut A
Examples:

- Use cylinders to drill holes
- Use rectangular blocks to cut slots
- Use half-spaces to cut planar faces
- Use surfaces swept from curves as jigsaws, etc.

Implicit Functions for Booleans

- Recall the implicit function for a solid: $F(x, y, z)<0$
- Boolean operations are replaced by arithmetic
- MAX
replaces And (intersection)
- MIN replaces OR (union)
- MINUS replaces NOT(unary subtraction)
- Thus
- $F($ Intersect $(A, B))=\operatorname{MAX}(F(A), F(B))$
- $F($ Union $(A, B))=M I N(F(A), F(B))$
$-F($ Subtract $(A, B))=\operatorname{MAX}(F(A),-F(B))$

CSG Trees

- Set operations yield tree-based representation

Source: Wikipedia

Implicit Surfaces

- Good for smoothly blending multiple components
- Clearly defined solid along with its boundary
- Intersection test and Inside/outside test are easy
- Need to polygonize to render --- expensive
- Interactive control is not easy
- Fitting to real world data is not easy
- Always smooth

Summary

- Polygon Meshes
- Parametric Surfaces
- Implicit Surfaces
- Constructive Solid Geometry

Thanks!

