CSCI 420: Computer Graphics

3.1 Viewing and Projection

Hao Li

http://cs420.hao-li.com

Recall: Affine Transformations

- Given a point $[x y z]^{\top}$
- form homogeneous coordinates $\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top}$

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{31} & m_{32} & m_{33} & m_{34} \\
m_{41} & m_{42} & m_{43} & m_{44}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- The transformed point is $\left[x^{\prime} y^{\prime} z^{\prime}\right]^{\top}$

Transformation Matrices in OpenGL

- Transformation matrices in OpenGL are vectors of 16 values (column-major matrices)
- In glLoadMatrixf(GLfloat *m);

$$
\begin{aligned}
& \mathbf{m}^{\top}=\left[m_{1}, m_{2}, \ldots, m_{16}\right]^{\top} \text { represents } \\
& {\left[\begin{array}{cccc}
m_{1} & m_{5} & m_{9} & m_{13} \\
m_{2} & m_{6} & m_{10} & m_{14} \\
m_{3} & m_{7} & m_{11} & m_{15} \\
m_{4} & m_{8} & m_{12} & m_{16}
\end{array}\right]}
\end{aligned}
$$

- Some books transpose all matrices!

Shear Transformations

- x-shear scales x proportional to y
- Leaves y and z values fixed

Specification via Shear Angle

$$
\begin{aligned}
& \cot (\theta)=\left(x^{\prime}-x\right) / y \\
& x^{\prime}=x+y \cot (\theta) \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& H_{x}(\theta)=\left[\begin{array}{cccc}
1 & \cot (\theta) & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Specification via Ratios

- For example, shear in both x and z direction
- Leave y fixed
- Slope α for x-shear, γ for z-shear
- Solve

$$
H_{x, z}(\alpha, \gamma)\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x+\alpha y \\
y \\
z+\gamma y \\
1
\end{array}\right]
$$

- Yields

$$
H_{x, z}(\alpha, \gamma)=\left[\begin{array}{cccc}
1 & \alpha & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \gamma & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Composing Transformations

- Let $\mathbf{p}=\mathbf{A q}$, and $\mathbf{q}=\mathbf{B}$ s
- Then $\mathbf{p}=(\mathbf{A B}) \mathbf{s}$

Composing Transformations

- Every affine transformation is a composition of rotations, scalings, and translations
- So, how do we compose these to form an x-shear?
- Exercise!

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Transform Camera = Transform Scene

- Camera position is identified with a frame
- Either move and rotate the objects
- Or move and rotate the camera
- Initially, camera at origin, pointing in negative z-direction

The Look-At Function

- Convenient way to position camera
- gluLookAt(ex, ey, ez, fx, fy, fz, ux, uy, uz);
- e = eye point
- $f=$ focus point
- u = up vector

OpenGL code

```
void display()
{
    glClear (GL_COLOR_BUFFER_BIT |
        GL_DEPTH_BUFFER_BIT);
    glMatrixMode (GL_MODELVIEW);
    glLoadldentity();
    gluLookAt (ex, ey, ez, fx, fy, fz, ux, uy, uz);
    glTranslatef(x, y, z);
    renderBunny();
    glutSwapBuffers();
}
```


Implementing the Look-At Function

1. Transform world frame to camera frame

- Compose a rotation \mathbf{R} with translation \mathbf{T}
$-\mathbf{W}=\mathbf{T R}$

2. Invert \mathbf{W} to obtain viewing transformation \mathbf{V}
$-\mathbf{V}=\mathbf{W}^{-1}=(\mathbf{T R})^{-1}=\mathbf{R}^{-1} \mathbf{T}^{-1}$

- Derive \mathbf{R}, then \mathbf{T}, then $\mathbf{R}^{-1} \mathbf{T}^{-1}$

World Frame to Camera Frame I

- Camera points in negative z direction
- $\mathbf{n}=(\mathbf{f}-\mathbf{e}) /\|\mathbf{f}-\mathbf{e}\|$ is unit normal to view plane
- Therefore, \mathbf{R} maps $[00-1]^{\top}$ to $\left[\begin{array}{ll}n_{x} & n_{y} \\ n_{z}\end{array}\right]^{\top}$

view plane

World Frame to Camera Frame II

- \mathbf{R} maps $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]^{\top}$ to projection of u onto view plane
- This projection \mathbf{v} equals:
- $\quad \alpha=\mathbf{u}^{\top} \mathbf{n} /\|\mathbf{n}\|=\mathbf{u}^{\top} \mathbf{n}$
- $\mathbf{v}_{0}=\mathbf{u}-\alpha \mathbf{n}$
- $\quad \mathbf{v}=\mathbf{v}_{0} /\left\|\mathbf{v}_{0}\right\|$

view plane

World Frame to Camera Frame III

- Set \mathbf{w} to be orthogonal to \mathbf{n} and \mathbf{v},
- $\mathbf{w}=\mathbf{n} \times \mathbf{v}$
- $[\mathbf{w} \mathbf{v}-\mathbf{n}]^{\top}$ is right-handed

view plane

Summary of Rotation

- gluLookAt($\left.e_{x}, e_{y}, e_{z}, f_{x}, f_{y}, f_{z}, u_{x}, u_{y}, u_{z}\right)$;
- $\mathbf{n}=(\mathbf{f}-\mathbf{e}) /\|\mathbf{f}-\mathbf{e}\|$,
- $\mathbf{v}=\left(\mathbf{u}-\left(\mathbf{u}^{\top} \mathbf{n}\right) \mathbf{n}\right) /\left\|\mathbf{u}-\left(\mathbf{u}^{\top} \mathbf{n}\right) \mathbf{n}\right\|$
- $\mathbf{w}=\mathbf{n} \times \mathbf{v}$
- Rotation must map:
- $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ to \mathbf{w}
- $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ to \mathbf{v}
- $[00-1]$ to \mathbf{n}

$$
\left[\begin{array}{cccc}
w_{x} & v_{x} & -n_{x} & 0 \\
w_{y} & v_{y} & -n_{y} & 0 \\
w_{z} & v_{z} & -n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

World Frame to Camera Frame IV

- Translation of origin to $\left.\mathbf{e}^{\top}=\left[\begin{array}{lll}e_{x} & e_{y} & e_{z}\end{array}\right]\right]^{\top}$

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & e_{x} \\
0 & 1 & 0 & e_{y} \\
0 & 0 & 1 & e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Camera Frame to Rendering Frame

- $\mathbf{V}=\mathbf{W}^{-1}=(\mathbf{T R})^{-1}=\mathbf{R}^{-1} \mathbf{T}^{-1}$
- \mathbf{R} is rotation, so $\mathbf{R}^{-1}=\mathbf{R}^{\top}$

$$
R^{-1}=\left[\begin{array}{cccc}
w_{x} & w_{y} & w_{z} & 0 \\
v_{x} & v_{y} & v_{z} & 0 \\
-n_{x} & -n_{y} & -n_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- \mathbf{T} is translation, so \mathbf{T}^{-1} negates displacement

$$
T^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & -e_{x} \\
0 & 1 & 0 & -e_{y} \\
0 & 0 & 1 & -e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Putting it Together

- Calculate $\mathbf{V}=\mathbf{R}^{-1} \mathbf{T}^{-1}$

$$
V=\left[\begin{array}{cccc}
w_{x} & w_{y} & w_{z} & -w_{x} e_{x}-w_{y} e_{y}-w_{z} e_{z} \\
v_{x} & v_{y} & v_{z} & -v_{x} e_{x}-v_{y} e_{y}-v_{z} e_{z} \\
-n_{x} & -n_{y} & -n_{z} & n_{x} e_{x}+n_{y} e_{y}+n_{z} e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- This is different from book [Angel, Ch. 5.3.2]
- There, $\mathbf{u}, \mathbf{v}, \mathbf{n}$ are right-handed (here: $\mathbf{u}, \mathbf{v},-\mathbf{n}$)

Other Viewing Functions

- Roll (about z), pitch (about x), yaw (about y)

Roll

- Assignment 2 poses a related problem

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Projection Matrices

- Recall geometric pipeline

- Projection takes 3D to 2D
- Projections are not invertible
- Projections are described by a 4×4 matrix
- Homogenous coordinates crucial
- Parallel and perspective projections

Parallel Projection

- Project 3D object to 2D via parallel lines
- The lines are not necessarily orthogonal to projection plane

Parallel Projection

- Problem: objects far away do not appear smaller
- Can lead to "impossible objects" :

Orthographic Projection

- A special kind of parallel projection: projectors perpendicular to projection plane
- Simple, but not realistic
- Used in blueprints (multiview projections)

Orthographic Projection Matrix

- Project onto $z=0$
- $x_{p}=x, y_{p}=y, z_{p}=0$
- In homogenous coordinates

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
z_{p} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Perspective

- Perspective characterized by foreshortening
- More distant objects appear smaller
- Parallel lines appear to converge
- Rudimentary perspective in cave drawings:

Lascaux, France
source: Wikipedia

Discovery of Perspective

- Foundation in geometry (Euclid)

Mural from
Pompeii, Italy

Middle Ages

- Art in the service of religion
- Perspective abandoned or forgotten

Ottonian manuscript, ca. 1000

Renaissance

- Rediscovery, systematic study of perspective

Filippo Brunelleschi Florence, 1415

Projection (Viewing) in OpenGL

- Remember: camera is pointing in the negative z direction

Orthographic Viewing in OpenGL

- glOrtho(xmin, xmax, ymin, ymax, near, far)

Perspective Viewing in OpenGL

- Two interfaces: glFrustum and gluPerspective
- glFrustum(xmin, xmax, ymin, ymax, near, far);

Field of View Interface

- gluPerspective(fovy, aspectRatio, near, far);
- near and far as before
- $\operatorname{aspectRatio}=w / h$
- Fovy specifies field
of view as
height (y) angle

OpenGL code

```
void reshape(int x, int y)
{
    gIViewport(0, 0, x, y);
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    gluPerspective(60.0, 1.0 * x / y, 0.01, 10.0);
    glMatrixMode(GL_MODELVIEW);
}
```


Perspective Viewing Mathematically

- $d=$ focal length
- $y / z=y_{p} / d \quad$ so $\quad y_{p}=y /(z / d)=y d / z$
- Note that y_{p} is non-linear in the depth z !

Exploiting the $4^{\text {th }}$ Dimension

Perspective projection is not affine:

$$
M\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{x}{z / d} \\
\frac{y}{z / d} \\
d \\
1
\end{array}\right] \text { has no solution for } M
$$

Idea: exploit homogeneous coordinates

$$
p=w\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right] \quad \text { for arbitrary } w \neq 0
$$

Perspective Projection Matrix

- Use multiple of point

$$
(z / d)\left[\begin{array}{c}
\frac{x}{z / d} \\
\frac{y}{z / d} \\
d \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z \\
\frac{z}{d}
\end{array}\right]
$$

- Solve

$$
M\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z \\
z \\
\frac{z}{d}
\end{array}\right] \quad \text { with } \quad M=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{d} & 0
\end{array}\right]
$$

Projection Algorithm

- Input: 3D point $[x y z]^{\top}$ to project
- Form $\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top}$
- Multiply M with $\left[\begin{array}{lll}x & y & z\end{array} 1\right]^{\top}$; obtaining $\left[\begin{array}{llll}X & Y & Z & W\end{array}\right]^{\top}$
- Perform perspective division:
$X / W, Y / W, Z / W$
- Output: $[X / W, Y / W, Z / W]^{\top}$
- (last coordinate will be d)

Perspective Division

- Normalize $\left[\begin{array}{lll}X & Y & Z\end{array}\right]^{\top}$ to $[X / W, Y / W, Z / W, 1]^{\top}$
- Perform perspective division after projection

- Projection in OpenGL is more complex (includes clipping)
http://cs420.hao-li.com

Thanks!

