#### CSCI 420: Computer Graphics

## 13.2 Physically Based Simulation II

Mass-Spring Systems

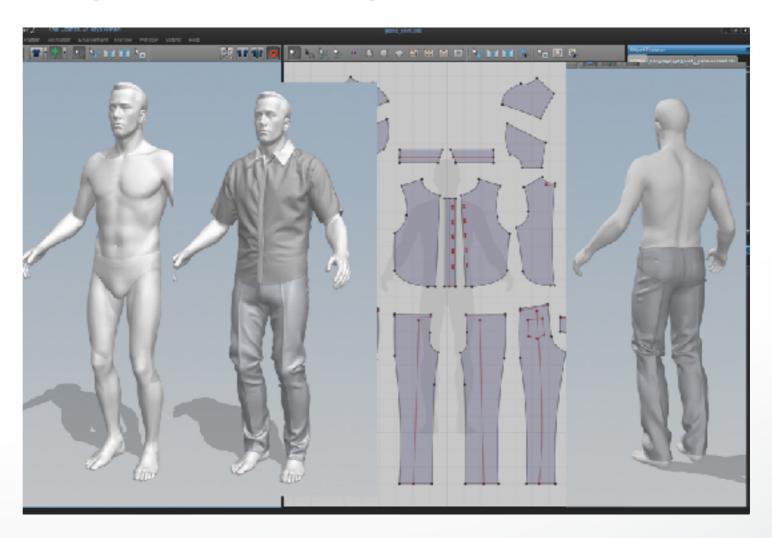




Hao Li

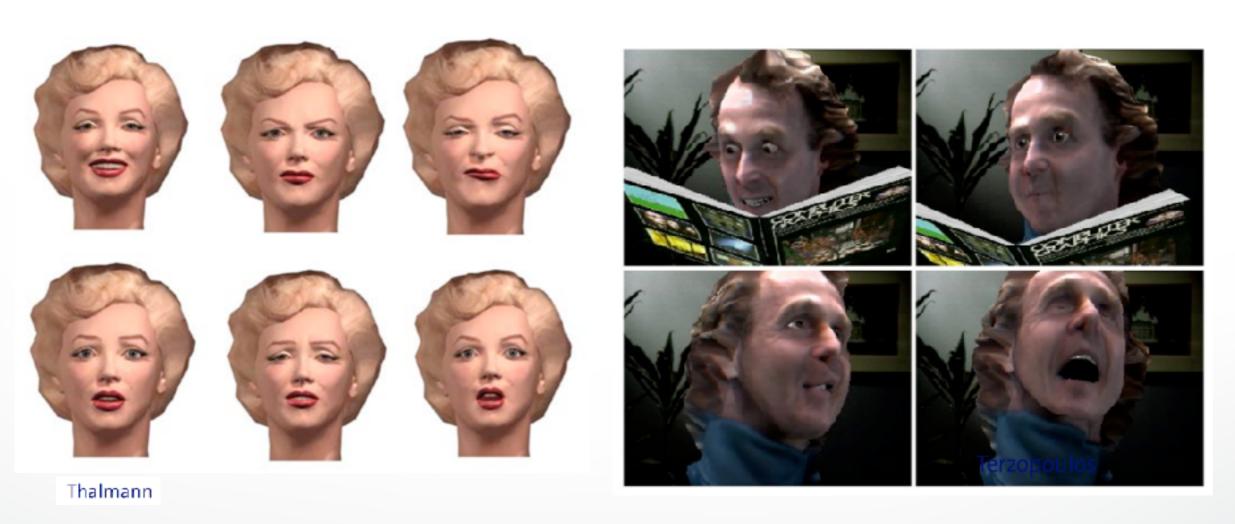
http://cs420.hao-li.com

## **Mass-Spring Systems**


#### The 101 of Physics Simulation

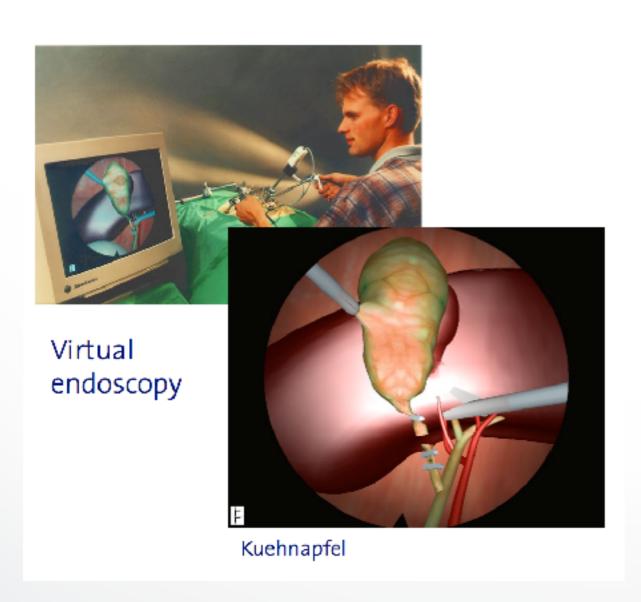
- What do we want to simulate? Deformable Objects
- Design a model. Mass points + springs.
- Write differential equations. Newton's 2nd Law (Hooke)
- Discretize equations. Integration methods for ODEs
- Add interaction. Collision detection + response
- Simulate!

## **Mass-Spring Systems**


- Simulation of cloth based on deformable surfaces (Polygonal mesh)
- Realistic simulation of cloth with different fabrics such as wool, cotton, or silk for garment design






### **Facial Animation**

- Simulation of facial expressions based on deformable surfaces/volumes/muscles
- Animation of face models from speech and mimic parameters



#### **Medical Simulation**

- Simulation of deformable soft tissue
- Surgical planning
- Medical training





Prediction of the surgical outcome in craniofacial surgery

#### Overview

- Model and Physics
- Implementation Hints
- Time-Discretization
- Collision Response
- (Simulation Loop)

## **Mass-Point System**

- Discretization of an object into mass points (gas, fluid, elastic object, inelastic object)
- System with multiple mass centers (Planetary System)
- Interaction between points i and j $\neq$ i based on internal forces  $\mathbf{F}_{ii}^{int}$
- All other forces at point i are external forces  $\mathbf{F}_{\mathbf{i}}^{ext}$
- Overall force  $F_i = F_{ij}^{int} + F_i^{ext}$

$$\mathbf{F_{ij}^{int}} = -\mathbf{F_{ji}^{int}} \qquad \qquad \sum_{i} \sum_{j} \mathbf{F_{ij}^{int}} = 0$$

## **Mass-Point System**

- Discretization of an object into mass points
- Representation of forces between masses by springs
- Computation of dynamics

#### **Mass-Points**

Object sampled using mass points Mass of object: M

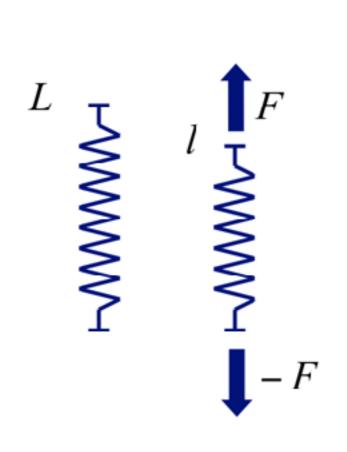
Number of points: n

Mass of each point: m=M/n

(if uniformly distributed)

Simulate the motion of each mass point

## **Physically-based Equations**


Equations that describe the behavior of the system (i.e. the mass points)

Physically-based model: Newton's 2<sup>nd</sup> Law

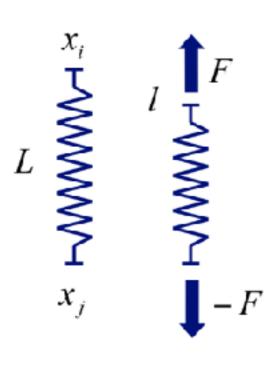
$$\sum \mathbf{F_i^{int}} + \mathbf{F_i^{ext}} = m\mathbf{a_i}$$

Next: Model the forces

## **Elastic Forces: Springs**



Spring stiffness is denoted as *k* Initial spring length *L* Current spring length *l* 


Deformation linear w.r.t. force:

$$F = -k(l-L)$$
 Hooke's Law

**Elasticity**: Ability of a spring to return to its initial form when the deforming force is removed.

Simple mechanism for internal forces.

## **Elastic Energies**

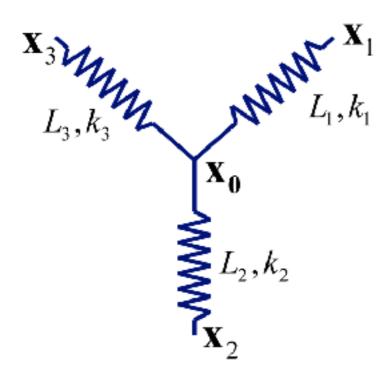


Elastic energy:

$$E = \frac{1}{2}k(l-L)^2$$

Force = - Partial Derivative (Gradient)

$$F_i = -\frac{\partial E}{\partial x_i}$$


Force in vector notation:

$$F_i = -k(l-L)\frac{\mathbf{x}_i - \mathbf{x}_j}{l}$$

Force-centered view versus energy-centered view

#### **Forces at a Mass Point**

#### Internal forces Fint



$$\mathbf{F_0^{int}} = -\sum_{i|i \in \{1,2,3\}} k_i (l_i - L_i) \frac{\mathbf{X_i} - \mathbf{X_0}}{l_i}$$

#### External forces F<sup>ext</sup>

Gravity
Contact forces
All forces that are
not caused by springs

### Resulting force at point

$$\mathbf{F}_{i} = \mathbf{F}_{i}^{int} + \mathbf{F}_{i}^{ext}$$

## **Dissipative Forces**

#### Dissipative forces

Damping Friction

$$\mathbf{F}^{damping}(t) = -\gamma \cdot \mathbf{v}(t)$$

## **System Equations**

**Equation of Motion** for one mass point (3 eqs.)

$$m_i \frac{d^2 \mathbf{x}_i(t)}{dt^2} = \mathbf{F}_i^{\text{int}}(t) + \mathbf{F}_i^{\text{ext}}(t)$$

**Equation of Motion** for a system of mass points (3n eqs.)

$$\mathbf{M} \frac{d^2 \mathbf{X}(t)}{dt^2} = \mathbf{F}^{\text{int}}(t) + \mathbf{F}^{\text{ext}}(t)$$

M is a diagonal matrix

## **System Equations**

#### Incorporation of damping

$$\mathbf{M} \frac{d^2 \mathbf{X}(t)}{dt^2} + \mathbf{D} \frac{d \mathbf{X}(t)}{dt} = \mathbf{F}^{\text{int}}(t) + \mathbf{F}^{\text{ext}}(t)$$

#### Overview

- Model and Physics
- Implementation Hints
- Time-Discretization
- Collision Response
- (Simulation Loop)

## **Elastic Spring**

```
class SPRING
{
  public:
    POINT *point1;
    POINT *point2;
    float stiffness;  // k
    float initialLength; // L
    float currentLength; // 1
    . . .
}
```

#### **Mass Point**

```
class POINT
   public:
      float mass;
      float position[3];
      float velocity[3];
      float force[3];
      float damping;
```

### **Force Computation**

#### Overview

- Model and Physics
- Implementation Hints
- Time-Discretization
- Collision Response
- (Simulation Loop)

## **System Equations**

System of 3*n* 2<sup>nd</sup> order Ordinary Differential Equations (ODE)

$$\mathbf{M}\frac{d^2\mathbf{X}(t)}{dt^2} + \mathbf{D}\frac{d\mathbf{X}(t)}{dt} = \mathbf{F}^{int}(t) + \mathbf{F}^{ext}(t)$$

One 2<sup>nd</sup> order ODE (1-dimensional problem)

$$m\frac{d^2x(t)}{dt^2} + \gamma \frac{dx(t)}{dt} = F(t)$$

Initial value problem: x(0) and v(0) are known

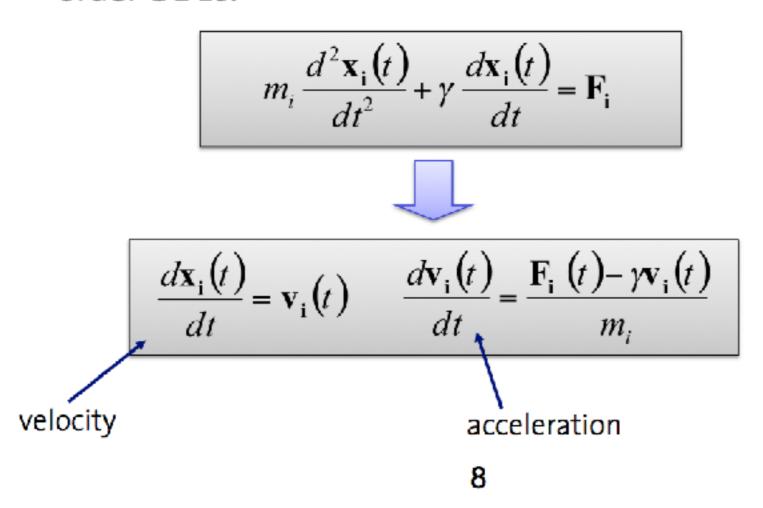
#### Solution

- a) Analytical solution (if we care about the exact state at time t)
- b) **Discrete** solution
- Graphics: the goal is to **display** the state at  $t_i$
- Find solution at discrete time instants  $t_i$ , assuming that we know previous solutions  $t_{i-1}$ ,  $t_{i-2}$ , etc.
- We do not care about the steady state error, but we want plausible behavior and response to external forces

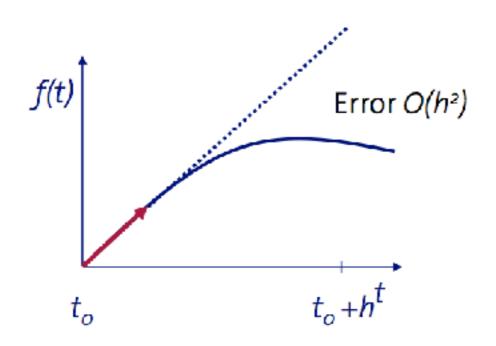
#### **Problem**

- We have:
  - Initial position x
  - Initial velocity v
  - 2nd derivative of position x with respect to time

$$\frac{d^2\mathbf{x_i}(t)}{dt^2} = \frac{\mathbf{F_i}(t) - \gamma \mathbf{v_i}(t)}{m_i}$$


Goal: Computation of position x over time

## **Numerical Integration Methods**


- Explicit Integration
  - Euler
  - Leapfrog
  - Heun
  - Midpoint
  - Runge-Kutta methods
- Implicit Integration
  - Backward Euler
- Predictor-Corrector methods
  - Gear
- Methods for higher order ODEs
  - Verlet
  - Beeman
- Variable time-step methods

## **Numerical Integration Methods**

 Reduction of a second-order ODE to two coupled firstorder ODEs.



## **Explicit Integration**



Euler Method

Leonard Euler: 1707 (Basel) – 1783 (St. Petersburg)

- Initial value f(t<sub>o</sub>)
- Compute the derivative at t<sub>o</sub>
- Move from t<sub>o</sub> to t<sub>o</sub>+h
   using the derivative at t<sub>o</sub>

## **Explicit Integration**

$$f(t_0 + h) = f(t_0) + h \cdot f'(t_0) + \frac{h^2}{2} f''(t_0) + \dots$$

$$f(t_0 + h) = f(t_0) + h \cdot f'(t_0) + O(h^2)$$

$$f(t_0 + h) \cong f(t_0) + h \cdot f'(t_0)$$
Euler method

$$f(t_0 + h) = f(t_0) + h \cdot f'(t_0) + O(h^2)$$

$$f(t_0 + h) \cong f(t_0) + h \cdot f'(t_0)$$

Euler method

## **Explicit Integration**

$$\mathbf{x}'(t) = \mathbf{v}(t)$$
  $\mathbf{v}'(t) = \frac{\mathbf{F}(t) - \gamma \mathbf{v}(t)}{m}$ 

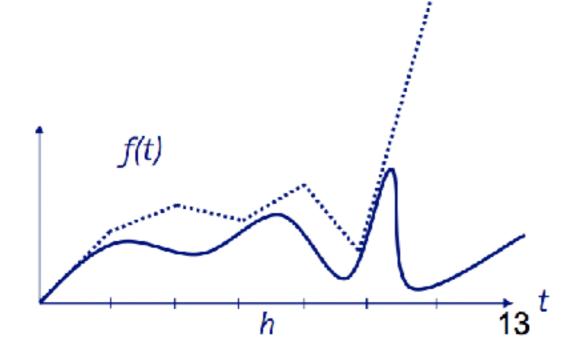
Start with initial values 
$$\mathbf{x}(t_0) = \mathbf{x}_0 \quad \mathbf{v}(t_0) = \mathbf{v}_0$$
Compute 
$$\mathbf{v}'(t_0) \quad \mathbf{x}'(t_0)$$
Assume 
$$\mathbf{v}'(t) = \mathbf{v}'(t_0) \quad \mathbf{x}'(t) = \mathbf{x}'(t_0) \quad t_0 \le t \le t_0 + h$$
Compute 
$$\mathbf{x}(t_0 + h) = \mathbf{x}(t_0) + h\mathbf{x}'(t_0) = \mathbf{x}(t_0) + h\mathbf{v}(t_0)$$
Compute 
$$\mathbf{v}(t_0 + h) = \mathbf{v}(t_0) + h\mathbf{v}'(t_0) = \mathbf{v}(t_0) + h\frac{\mathbf{F}(t_0) - \gamma \mathbf{v}(t_0)}{m}$$

F(t) is computed from x(t) and external forces!

#### **Error Accumulation**

$$\mathbf{x}'(t) = \mathbf{v}(t)$$
  $\mathbf{v}'(t) = \frac{\mathbf{F}(t) - \gamma \mathbf{v}(t)}{m}$ 

Euler step from  $t_0$  to  $t_0+h$  $\mathbf{x}(t_0+h) = \mathbf{x}(t_0) + h\mathbf{v}(t_0) \qquad \mathbf{v}(t_0+h) = \mathbf{v}(t_0) + h\frac{\mathbf{F}(t_0) - \gamma \mathbf{v}(t_0)}{\mathbf{v}(t_0)}$ 


$$\mathbf{x}(t_{0} + 2h) = \mathbf{x}(t_{0} + h) + h\mathbf{v}(t_{0} + h)$$
Euler step 
$$\mathbf{v}(t_{0} + 2h) = \mathbf{v}(t_{0} + h) + h\frac{\mathbf{F}(t_{0} + h) - \gamma\mathbf{v}(t_{0} + h)}{m}$$

#### **Problems**

Numerical integration is inaccurate.

$$f(t+h)=f(t)+f'(t)h+O(h^2)$$
Euler step Error

Inaccuracy can cause instability.



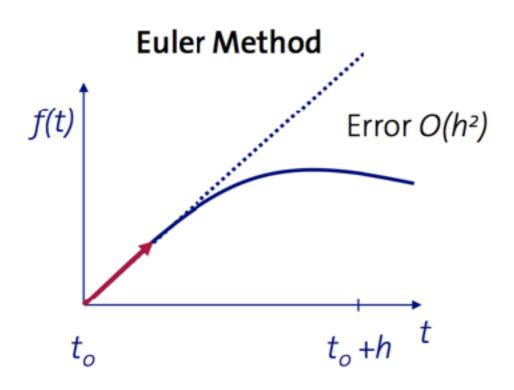
**Error** 

$$0 \le e < \frac{h^2}{2} \cdot f''(t_e), \quad t_e \in [t, t+h]$$

## Improving Accuracy - Leap Frog

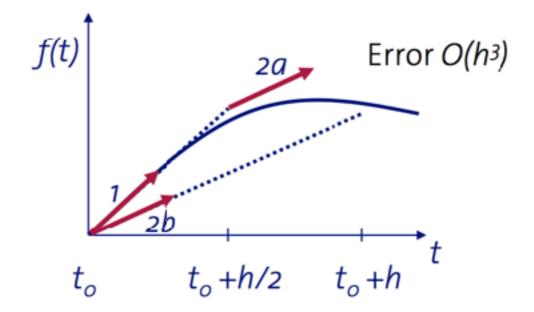
$$\mathbf{v}(t+h/2) = \mathbf{v}(t-h/2) + h \cdot \mathbf{a}(t)$$
$$\mathbf{x}(t+h) = \mathbf{x}(t) + h \cdot \mathbf{v}(t+h/2)$$

Error  $O(h^3)$ time step h is significantly larger compared to Euler


#### Implementation

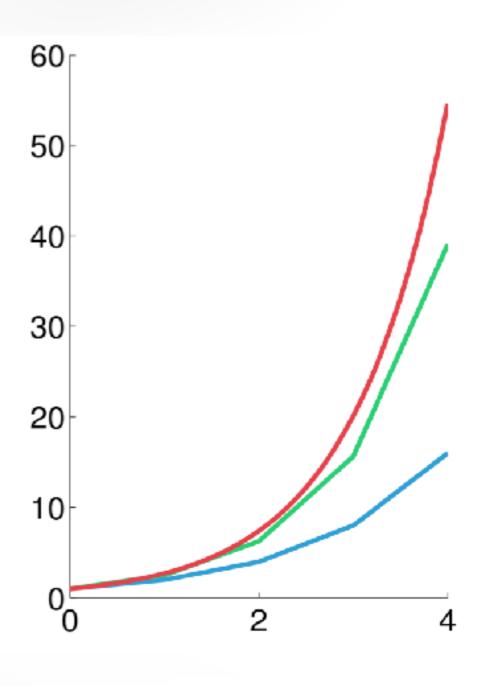
| Euler                                                                                                  | Leapfrog                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| addForces(); // F(t) positionEuler(h); // x=x(t+h)=x(t)+hv(t) velocityEuler(h); // v=v(t+h)=v(t)+ha(t) | initV() // v(o) = v(o) – h/2a(o) addForces(h); // F(t) velocityEuler(h); // v=v(t+h)=v(t)+ha(t) positionEuler(h); // x=x(t+h)=x(t)+hv(t+h) |

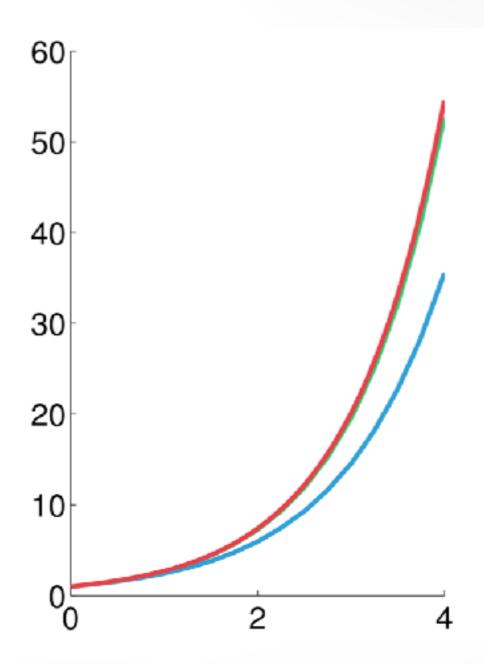
(In practice, it is irrelevant that velocities are computed at mid time steps)


## Improving Accuracy - Runge Kutta

#### 2nd order (midpoint method)




- Compute the derivative at to
- Move from  $t_o$  to  $t_o$  +h using the derivative at  $t_o$


#### Runge-Kutta Methods



- Compute the derivative at t<sub>o</sub>
- Move to  $t_o + h/2$
- Compute the derivative at  $t_o + h/2$
- Move from t<sub>o</sub> to t<sub>o</sub> +h using the derivative at t<sub>o</sub> +h/2
- Second order R-K also called "midpoint"

## Midpoint vs Euler





- •Green = Midpoint
- •Blue = Euler
- •h=1 vs. h=1/4

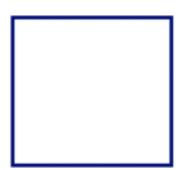
## **Implementation**

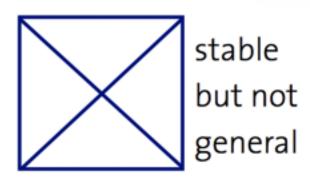
#### **Euler Method**

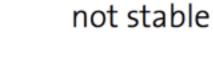
#### Straightforward:

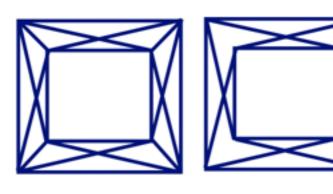
- Compute spring forces
- Add external forces
- Update positions
- Update velocities

#### Runge-Kutta Methods


- Compute spring forces
- Add external forces
- Compute auxiliary positions and velocities
  - once for second-order
  - three times for fourth-order
  - requires additional data copies
- Update positions
- Update velocities


## **Avoiding Instability**

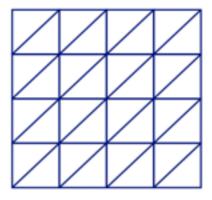

- No general solution to avoid instability for complex mass-point systems.
- A smaller time step increases the chance for stability.
- A larger time step speeds up the simulation.
- Parameters and topology of the mass-point system, and external forces influence the stability of a system.
- Increasing damping does not always help.


## **Topology and Stability**

 Stable model topologies with respect to deformation

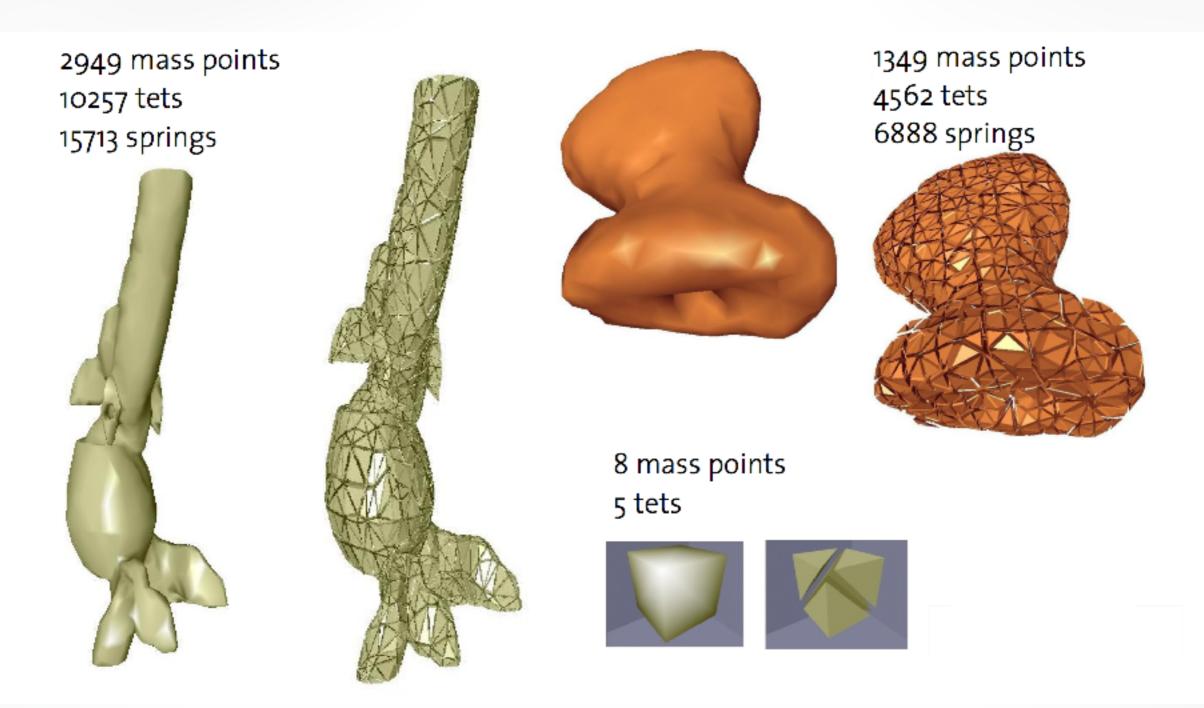








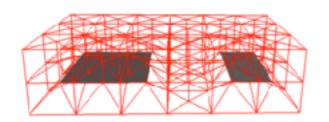

#### stable

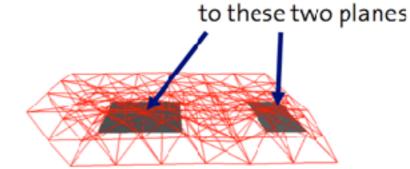

can be generated automatically by copying the surface to an inner layer and connecting both – **layered model** in the extreme case, consider the inner layer to be just a point

Design problem



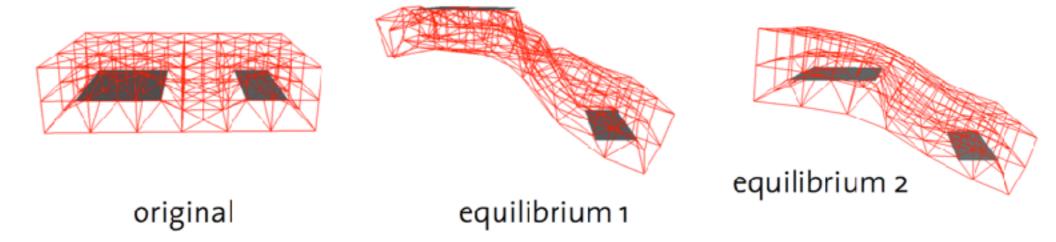
much more resistant in 
direction than in 
direction.


## **Volumetric Models - Tet Meshes**



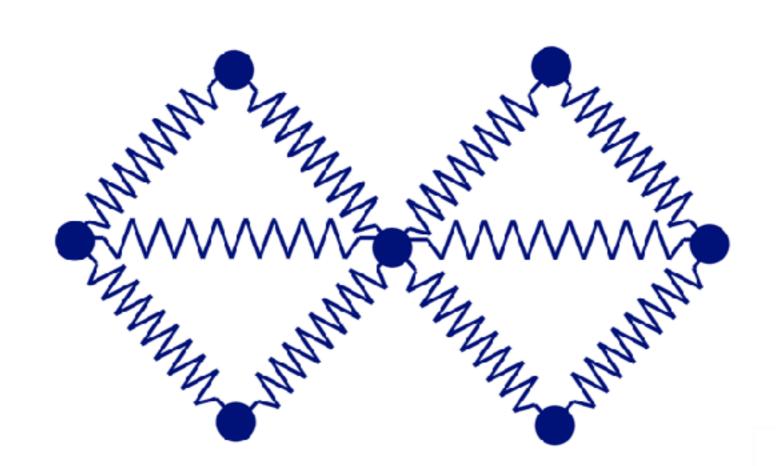

## **Topology Ambiguity Problem**

Unappropriate topology without diagonal springs


No force penalty for shearing



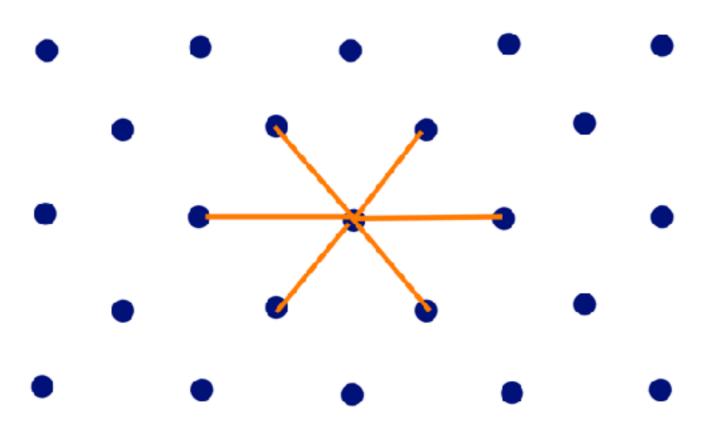



model is attached

- Appropriate topology with diagonal springs
- However, self-collision problem, springs have no notion of volume



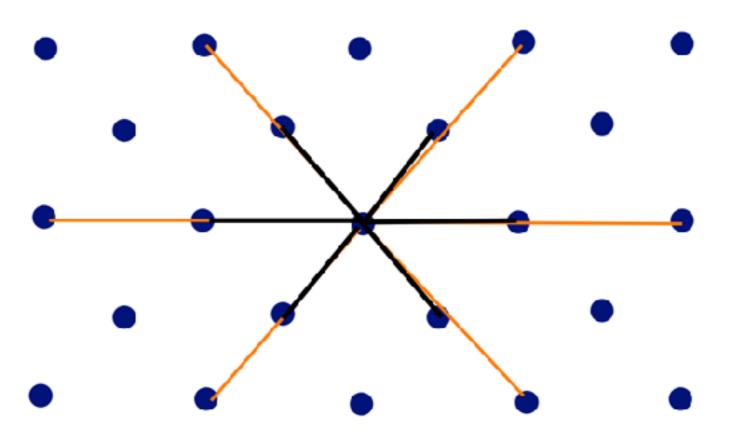
### **Cloth Forces**


- Types of forces in cloth: stretch, bending, shear
- Bending cannot be modeled with a simple network of springs

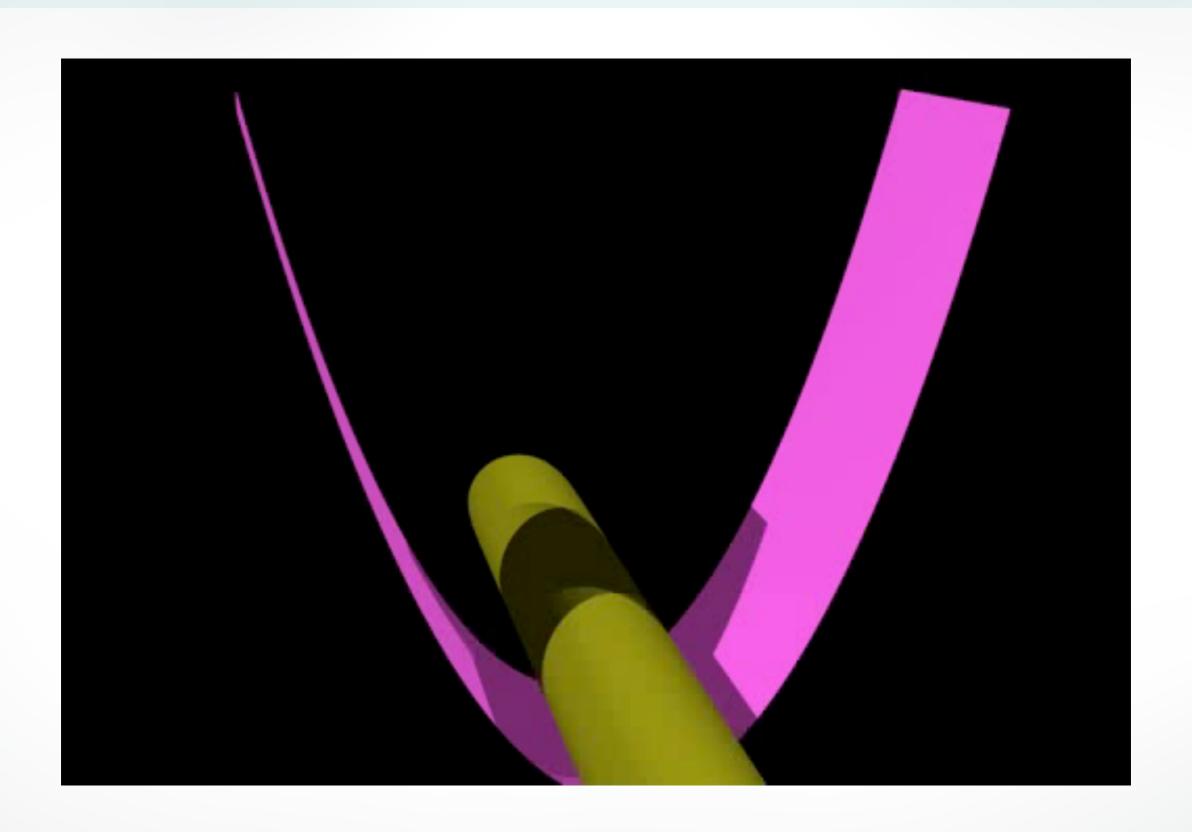


## **Cloth Springs**

• Combine level-1 and level-2 springs


#### Level 1 for stretch




## **Cloth Springs**

Combine level-1 and level-2 springs

#### Level 2 for bending



# **Cloth Springs**



### http://cs420.hao-li.com

# Thanks!

