
CSCI 420: Computer Graphics

Hao Li
http://cs420.hao-li.com

Fall 2017

3.1 Viewing and Projection

1

http://cs420.hao-li.com

Recall: Affine Transformations

• Given a point

• form homogeneous coordinates

• The transformed point is

[x y z]>

[x y z 1]>

[x0
y

0
z

0]>

2

Transformation Matrices in OpenGL

• Transformation matrices in OpenGL are vectors
 of 16 values (column-major matrices)

• In glLoadMatrixf(GLfloat *m);

• Some books transpose all matrices!

 represents

3

m> = [m1,m2, . . . ,m16]
>

Shear Transformations

• x-shear scales proportional to

• Leaves and values fixed

4

x y

y z

Specification via Shear Angle

= shear angle

5

cot(✓) = (x

0 � x)/y

x

0
= x+ y cot(✓)

y0 = y

z0 = z

✓

[x, y] [x0
, y

0]
x

0 � x

x

y

y

✓

✓

Specification via Ratios

• For example, shear in both and direction

• Leave fixed

• Slope for -shear, for -shear

• Solve

• Yields

6

y

x

z

↵ �
x

z

Composing Transformations

• Let , and

• Then

 
matrix multiplication

7

p = Aq q = Bs

p = (AB)s

AB

AB

s q p

Composing Transformations

• Every affine transformation is a composition of
rotations, scalings, and translations

• So, how do we compose these to  
form an x-shear?

• Exercise!

8

Outline

• Shear Transformation

• Camera Positioning

• Simple Parallel Projections

• Simple Perspective Projections

9

Transform Camera = Transform Scene

• Camera position is identified with a frame

• Either move and rotate the objects

• Or move and rotate the camera

• Initially, camera at origin, pointing in  
negative z-direction

10

The Look-At Function

• Convenient way to position camera

• gluLookAt(ex, ey, ez, fx, fy, fz, ux, uy, uz);

• e = eye point

• f = focus point

• u = up vector

u

e

u
e

f

f

view plane

11

OpenGL code

void display()
{
 glClear (GL_COLOR_BUFFER_BIT | 
 GL_DEPTH_BUFFER_BIT);
 glMatrixMode (GL_MODELVIEW);
 glLoadIdentity();

 gluLookAt (ex, ey, ez, fx, fy, fz, ux, uy, uz);

 glTranslatef(x, y, z);
 ...
 renderBunny();

 glutSwapBuffers();
}

12

Implementing the Look-At Function

1. Transform world frame to camera frame
 - Compose a rotation with translation
 -

2. Invert to obtain viewing transformation
 -
 - Derive , then , then

13

R T

W = TR

W V
V = W�1 = (TR)�1 = R�1T�1

R T R�1T�1

World Frame to Camera Frame I

• Camera points in negative direction

• is unit normal to view plane

• Therefore, maps to

view plane

14

z

n = (f � e)/kf � ek

R [0 0 � 1]> [n
x

n
y

n
z

]>

e n

u

f

World Frame to Camera Frame II

• maps to projection of u onto view plane

• This projection equals:
 -
 -
 -

view plane

15

e n

u

f
↵

v0

R [0 1 0]>

↵ = u>n/knk = u>n

v0 = u� ↵n

v = v0/kv0k

v

World Frame to Camera Frame III

• Set to be orthogonal to and ,

• ,

• is right-handed

view plane

16

e n f

v

w

w vn

w = n⇥ v

[w v � n]>

Summary of Rotation

• gluLookAt(ex, ey, ez, fx, fy, fz, ux, uy, uz);

• ,

• ,

• .

• Rotation must map:
 - to
 - to
 - to

17

n = (f � e)/kf � ek

v = (u� (u>n)n)/ku� (u>n)nk

w = n⇥ v

[1 0 0]
[0 1 0]

[0 0 � 1]

w
v

n

World Frame to Camera Frame IV

• Translation of origin to

18

e> = [e
x

e
y

e
z

1]>

Camera Frame to Rendering Frame

• ,

• is rotation, so

• is translation, so negates displacement

19

V = W�1 = (TR)�1 = R�1T�1

R R�1 = R>

T T�1

Putting it Together

• Calculate

• This is different from book [Angel, Ch. 5.3.2]

• There, are right-handed (here:)

20

V = R�1T�1

u,v,n u,v,�n

Other Viewing Functions

• Roll (about z), pitch (about x), yaw (about y)

• Assignment 2 poses a related problem

21

Outline

• Shear Transformation

• Camera Positioning

• Simple Parallel Projections

• Simple Perspective Projections

22

Projection Matrices

• Recall geometric pipeline

• Projection takes 3D to 2D

• Projections are not invertible

• Projections are described by a 4x4 matrix

• Homogenous coordinates crucial

• Parallel and perspective projections
23

Parallel Projection

• Project 3D object to 2D via parallel lines

• The lines are not necessarily orthogonal 
to projection plane

source:Wikipedia

24

Parallel Projection

• Problem: objects far away do not appear smaller

• Can lead to “impossible objects” :

Penrose stairs source:Wikipedia

25

Orthographic Projection

• A special kind of parallel projection:  
projectors perpendicular to projection plane

• Simple, but not realistic

• Used in blueprints (multiview projections)

26

Orthographic Projection Matrix

• Project onto

• , ,

• In homogenous coordinates

27

z = 0

xp = x

yp = y zp = 0

Perspective

• Perspective characterized by foreshortening

• More distant objects appear smaller

• Parallel lines appear to converge

• Rudimentary perspective in cave drawings:

Lascaux, France  
source: Wikipedia

28

Discovery of Perspective

• Foundation in geometry (Euclid)

Mural from
Pompeii, Italy

29

Middle Ages

• Art in the service of religion

• Perspective abandoned or forgotten

Ottonian manuscript,
ca. 1000

30

Renaissance

• Rediscovery, systematic study of perspective

Filippo Brunelleschi
Florence, 1415

31

Projection (Viewing) in OpenGL

• Remember: camera is pointing in the
 negative z direction

32

Orthographic Viewing in OpenGL

• glOrtho(xmin, xmax, ymin, ymax, near, far)

33

z
min

= near, z
max

= far

Perspective Viewing in OpenGL

• Two interfaces: glFrustum and gluPerspective

• glFrustum(xmin, xmax, ymin, ymax, near, far);

34

z
min

= near, z
max

= far

Field of View Interface

• gluPerspective(fovy, aspectRatio, near, far);

• and as before

• aspectRatio =

• Fovy specifies field  
of view as  
height () angle

35

w/h

y

near far

OpenGL code

void reshape(int x, int y)
{
 glViewport(0, 0, x, y);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 gluPerspective(60.0, 1.0 * x / y, 0.01, 10.0);

 glMatrixMode(GL_MODELVIEW);
}

36

Perspective Viewing Mathematically

• = focal length

• so

• Note that is non-linear in the depth !

37

d

y/z = yp/d yp = y/(z/d) = yd/z

yp z

Exploiting the 4th Dimension

Perspective projection is not affine:

Idea: exploit homogeneous coordinates

has no solution for

for arbitrary

38

M

w 6= 0

Perspective Projection Matrix

• Use multiple of point

• Solve

with

39

Projection Algorithm

• Input: 3D point to project

• Form

• Multiply with ; obtaining

• Perform perspective division:  
 , ,

• Output:

• (last coordinate will be)
40

[x y z]>

[x y z 1]>

[x y z 1]> [X Y Z W]>M

X/W Y/W Z/W

[X/W,Y/W,Z/W]>

d

Perspective Division

• Normalize to

• Perform perspective division after projection

• Projection in OpenGL is more complex 
(includes clipping)

41

[X Y Z W]> [X/W, Y/W, Z/W, 1]>

http://cs420.hao-li.com

Thanks!

42

http://cs420.hao-li.com

