Fall 2017

CSCI 420: Computer Graphics

3.1 Viewing and Projection

Hao Li http://cs420.hao-li.com

1

Recall: Affine Transformations

- Given a point $[x \ y \ z]^{\top}$
- form homogeneous coordinates $[x \ y \ z \ 1]^{+}$

$\begin{bmatrix} x' \end{bmatrix}$		m_{11}	m_{12}	m_{13}	m_{14}]	$\begin{bmatrix} x \end{bmatrix}$
y'		m_{21}	m_{22}	m_{23}	<i>m</i> ₂₄	y
<i>z</i> ′		m_{31}	m_{32}	m_{33}	<i>m</i> ₃₄	<i>z</i> .
L 1 _		m_{41}	m_{42}	m_{43}	m_{44}	[1]

• The transformed point is $[x' \ y' \ z']^\top$

Transformation Matrices in OpenGL

- Transformation matrices in OpenGL are vectors of 16 values (column-major matrices)
- In glLoadMatrixf(GLfloat *m);

$$\mathbf{m}^{\top} = [m_1, m_2, \dots, m_{16}]^{\top}$$
 represents

Γ	m_1	m_5	<i>m</i> 9	m_{13}	
	m_2	m_6	m_{10}	m_{14}	
	m_3	m_7	m_{11}	m_{15}	
L	m_4	m_8	m_{12}	m_{16} .	

• Some books transpose all matrices!

Shear Transformations

- x-shear scales x proportional to y
- Leaves y and z values fixed

Specification via Shear Angle

$$\cot(\theta) = (x' - x)/y$$

$$x' = x + y \cot(\theta)$$

$$y' = y$$

$$z' = z$$

$$H_x(\theta) = \begin{bmatrix} 1 & \cot(\theta) & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Specification via Ratios

- For example, shear in both x and z direction
- Leave *y* fixed
- Slope α for x-shear, γ for z-shear

• Solve

$$H_{x,z}(\alpha, \gamma) \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x + \alpha y \\ y \\ z + \gamma y \\ 1 \end{bmatrix}$$
• Yields

$$\begin{bmatrix} 1 & \alpha & 0 & 0 \end{bmatrix}$$

Helds
$$H_{x,z}(\alpha,\gamma) = \begin{bmatrix} 1 & \alpha & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \gamma & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Composing Transformations

- Let $\mathbf{p}=\mathbf{A}\mathbf{q}$, and $\mathbf{q}=\mathbf{B}\mathbf{s}$
- Then $\mathbf{p} = (\mathbf{AB})\mathbf{s}$

Composing Transformations

- Every affine transformation is a composition of rotations, scalings, and translations
- So, how do we compose these to form an x-shear?
- Exercise!

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Transform Camera = Transform Scene

- Camera position is identified with a frame
- Either move and rotate the objects
- Or move and rotate the camera
- Initially, camera at origin, pointing in negative z-direction

The Look-At Function

- Convenient way to position camera
- gluLookAt(ex, ey, ez, fx, fy, fz, ux, uy, uz);
- e = eye point
- f = focus point
- u = up vector

OpenGL code

```
void display()
 glClear (GL_COLOR_BUFFER_BIT |
     GL DEPTH BUFFER BIT);
 glMatrixMode (GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt (ex, ey, ez, fx, fy, fz, ux, uy, uz);
 glTranslatef(x, y, z);
 renderBunny();
 glutSwapBuffers();
```

Implementing the Look-At Function

1. Transform world frame to camera frame

- Compose a rotation ${\bf R}$ with translation ${\bf T}$

 $-\mathbf{W}=\mathbf{TR}$

2. Invert ${\bf W}$ to obtain viewing transformation ${\bf V}$

- $V = W^{-1} = (TR)^{-1} = R^{-1}T^{-1}$

- Derive ${\bf R}$, then ${\bf T}$, then ${\bf R}^{-1}{\bf T}^{-1}$

World Frame to Camera Frame I

- Camera points in negative z direction
- $\mathbf{n} = (\mathbf{f} \mathbf{e}) / \|\mathbf{f} \mathbf{e}\|$ is unit normal to view plane
- Therefore, \mathbf{R} maps $[0 \ 0 \ -1]^{ op}$ to $[n_x \ n_y \ n_z]^{ op}$

World Frame to Camera Frame II

- \mathbf{R} maps $[0\ 1\ 0]^{\top}$ to projection of u onto view plane
- This projection ${\bf v}$ equals:

$$- \alpha = \mathbf{u}^{\top} \mathbf{n} / \|\mathbf{n}\| = \mathbf{u}^{\top} \mathbf{n}$$

$$-\mathbf{v}_0 = \mathbf{u} - \alpha \mathbf{n}$$

World Frame to Camera Frame III

- Set \boldsymbol{w} to be orthogonal to \boldsymbol{n} and \boldsymbol{v} ,
- $\mathbf{w} = \mathbf{n} \times \mathbf{v}$,
- $[\mathbf{w} \mathbf{v} \mathbf{n}]^{\top}$ is right-handed

Summary of Rotation

• $gluLookAt(e_x, e_y, e_z, f_x, f_y, f_z, u_x, u_y, u_z);$

•
$$\mathbf{n} = (\mathbf{f} - \mathbf{e}) / \|\mathbf{f} - \mathbf{e}\|$$
 ,

•
$$\mathbf{v} = (\mathbf{u} - (\mathbf{u}^{\top}\mathbf{n})\mathbf{n})/\|\mathbf{u} - (\mathbf{u}^{\top}\mathbf{n})\mathbf{n}\|$$

•
$$\mathbf{w} = \mathbf{n} \times \mathbf{v}$$

- Rotation must map:
 - $[1\ 0\ 0]$ to ${f w}$
 - $[0 \ 1 \ 0]$ to ${f v}$
 - $[0 \ 0 \ -1]$ to ${f n}$

$$\begin{bmatrix} w_x & v_x & -n_x & 0 \\ w_y & v_y & -n_y & 0 \\ w_z & v_z & -n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

"

World Frame to Camera Frame IV

• Translation of origin to $\mathbf{e}^{\top} = [e_x \ e_y \ e_z \ 1]^{\top}$

Camera Frame to Rendering Frame

- $V = W^{-1} = (TR)^{-1} = R^{-1}T^{-1}$
- **R** is rotation, so $\mathbf{R}^{-1} = \mathbf{R}^{\top}$

$$R^{-1} = \begin{bmatrix} w_x & w_y & w_z & 0\\ v_x & v_y & v_z & 0\\ -n_x & -n_y & -n_z & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• T is translation, so T^{-1} negates displacement

$$T^{-1} = \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Putting it Together

• Calculate $\mathbf{V} = \mathbf{R}^{-1}\mathbf{T}^{-1}$

$$V = \begin{bmatrix} w_x & w_y & w_z & -w_x e_x - w_y e_y - w_z e_z \\ v_x & v_y & v_z & -v_x e_x - v_y e_y - v_z e_z \\ -n_x & -n_y & -n_z & n_x e_x + n_y e_y + n_z e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- This is different from book [Angel, Ch. 5.3.2]
- There, $\mathbf{u}, \mathbf{v}, \mathbf{n}$ are right-handed (here: $\mathbf{u}, \mathbf{v}, -\mathbf{n}$)

Other Viewing Functions

• Roll (about z), pitch (about x), yaw (about y)

• Assignment 2 poses a related problem

Outline

- Shear Transformation
- Camera Positioning
- Simple Parallel Projections
- Simple Perspective Projections

Projection Matrices

• Recall geometric pipeline

- Projection takes 3D to 2D
- Projections are not invertible
- Projections are described by a 4x4 matrix
- Homogenous coordinates crucial
- Parallel and perspective projections

Parallel Projection

- Project 3D object to 2D via parallel lines
- The lines are not necessarily orthogonal to projection plane

source:Wikipedia

Parallel Projection

- Problem: objects far away do not appear smaller
- Can lead to "impossible objects" :

Orthographic Projection

- A special kind of parallel projection: projectors perpendicular to projection plane
- Simple, but not realistic
- Used in blueprints (multiview projections)

Orthographic Projection Matrix

• Project onto z = 0

•
$$x_p = x$$
 , $y_p = y$, $z_p = 0$

• In homogenous coordinates

Perspective

- Perspective characterized by foreshortening
- More distant objects appear smaller
- Parallel lines appear to converge
- Rudimentary perspective in cave drawings:

Lascaux, France source: Wikipedia

Discovery of Perspective

• Foundation in geometry (Euclid)

Mural from Pompeii, Italy

Middle Ages

- Art in the service of religion
- Perspective abandoned or forgotten

Ottonian manuscript, ca. 1000

Renaissance

• Rediscovery, systematic study of perspective

Filippo Brunelleschi Florence, 1415

Projection (Viewing) in OpenGL

• Remember: camera is pointing in the negative z direction

Orthographic Viewing in OpenGL

• glOrtho(xmin, xmax, ymin, ymax, near, far)

Perspective Viewing in OpenGL

- Two interfaces: glFrustum and gluPerspective
- glFrustum(xmin, xmax, ymin, ymax, near, far);

Field of View Interface

- gluPerspective(fovy, aspectRatio, near, far);
- near and far as before
- aspectRatio = w/h
- Fovy specifies field of view as height (*y*) angle

OpenGL code

```
void reshape(int x, int y)
{
```

```
glViewport(0, 0, x, y);
```

```
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
```

```
gluPerspective(60.0, 1.0 * x / y, 0.01, 10.0);
```

```
glMatrixMode(GL_MODELVIEW);
```

Perspective Viewing Mathematically

- d = focal length
- $y/z = y_p/d$ so $y_p = y/(z/d) = yd/z$
- Note that y_p is non-linear in the depth z!

Exploiting the 4th Dimension

Perspective projection is not affine:

$$M\begin{bmatrix}x\\y\\z\\1\end{bmatrix} = \begin{bmatrix}\frac{x}{z/d}\\\frac{y}{z/d}\\d\\1\end{bmatrix}$$

has no solution for $\,M\,$

Idea: exploit homogeneous coordinates

$$p = w \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

for arbitrary $w \neq 0$

Perspective Projection Matrix

• Use multiple of point

$$(z/d) \begin{bmatrix} \frac{x}{z/d} \\ \frac{y}{z/d} \\ d \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ \frac{z}{d} \end{bmatrix}$$

Solve

$$M\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ \frac{z}{d} \end{bmatrix} \text{ with } M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix}$$

Projection Algorithm

- Input: 3D point $[x \ y \ z]^{\top}$ to project
- Form $[x \ y \ z \ 1]^{\top}$
- Multiply M with $[x \ y \ z \ 1]^\top$; obtaining $[X \ Y \ Z \ W]^\top$
- Perform perspective division: X/W , Y/W , Z/W
- Output: $[X/W, Y/W, Z/W]^{\top}$
- (last coordinate will be d)

Perspective Division

- Normalize $[X Y Z W]^{\top}$ to $[X/W, Y/W, Z/W, 1]^{\top}$
- Perform perspective division after projection

 Projection in OpenGL is more complex (includes clipping)

http://cs420.hao-li.com

Thanks!

