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3.1 Viewing and Projection
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Recall: Affine Transformations

• Given a point  

• form homogeneous coordinates

• The transformed point is
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Transformation Matrices in OpenGL

• Transformation matrices in OpenGL are vectors 
  of 16 values (column-major matrices) 

• In glLoadMatrixf(GLfloat *m); 

• Some books transpose all matrices!

                                              represents
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Shear Transformations

• x-shear scales     proportional to 

• Leaves     and    values fixed
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Specification via Shear Angle

= shear angle
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Specification via Ratios

• For example, shear in both    and    direction 

• Leave    fixed 

• Slope     for   -shear,      for   -shear 

• Solve 

• Yields
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Composing Transformations

• Let                 , and 

• Then

 
matrix multiplication
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Composing Transformations

• Every affine transformation is a composition of 
rotations, scalings, and translations 

• So, how do we compose these to  
form an x-shear? 

• Exercise!
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Outline

• Shear Transformation 

• Camera Positioning 

• Simple Parallel Projections 

• Simple Perspective Projections
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Transform Camera = Transform Scene

• Camera position is identified with a frame 

• Either move and rotate the objects 

• Or move and rotate the camera 

• Initially, camera at origin, pointing in  
negative z-direction
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The Look-At Function

• Convenient way to position camera 

• gluLookAt(ex, ey, ez,  fx,  fy,  fz,  ux, uy, uz); 

• e = eye point 

• f = focus point 

• u = up vector
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view plane
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OpenGL code

void display() 
{ 
  glClear (GL_COLOR_BUFFER_BIT | 
      GL_DEPTH_BUFFER_BIT); 
  glMatrixMode (GL_MODELVIEW); 
  glLoadIdentity(); 

  gluLookAt (ex, ey, ez,  fx, fy, fz,  ux, uy, uz); 

  glTranslatef(x, y, z); 
  ... 
  renderBunny(); 

  glutSwapBuffers(); 
}
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Implementing the Look-At Function

1. Transform world frame to camera frame 
 - Compose a rotation     with translation 
 - 

2. Invert      to obtain viewing transformation 
 - 
 - Derive    , then    , then
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World Frame to Camera Frame I

• Camera points in negative     direction 

•                                     is unit normal to view plane 

• Therefore,     maps                   to

view plane
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World Frame to Camera Frame II

•     maps              to projection of u onto view plane 

• This projection      equals: 
  - 
 - 
 -

view plane
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World Frame to Camera Frame III

• Set     to be orthogonal to     and     , 

•                        , 

•                      is right-handed

view plane
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Summary of Rotation

• gluLookAt(ex, ey, ez,  fx, fy, fz,  ux, uy, uz); 

•                                      , 

•                                                               , 

•                       . 

• Rotation must map: 
 -            to  
 -            to  
 -                 to 
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World Frame to Camera Frame IV

• Translation of origin to
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Camera Frame to Rendering Frame

•                                                             , 

•      is rotation, so 

•     is translation, so           negates displacement
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Putting it Together

• Calculate 

• This is different from book [Angel, Ch. 5.3.2] 

• There,             are right-handed (here:                )
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Other Viewing Functions

• Roll (about z), pitch (about x), yaw (about y) 

• Assignment 2 poses a related problem
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Outline

• Shear Transformation 

• Camera Positioning 

• Simple Parallel Projections 

• Simple Perspective Projections
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Projection Matrices

• Recall geometric pipeline 

• Projection takes 3D to 2D 

• Projections are not invertible 

• Projections are described by a 4x4 matrix 

• Homogenous coordinates crucial 

• Parallel and perspective projections
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Parallel Projection

• Project 3D object to 2D via parallel lines 

• The lines are not necessarily orthogonal 
to projection plane

source:Wikipedia
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Parallel Projection

• Problem: objects far away do not appear smaller 

• Can lead to “impossible objects” : 

Penrose stairs source:Wikipedia
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Orthographic Projection

• A special kind of parallel projection:  
projectors perpendicular to projection plane 

• Simple, but not realistic 

• Used in blueprints (multiview projections)
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Orthographic Projection Matrix

• Project onto  

•              ,              ,        

• In homogenous coordinates
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Perspective

• Perspective characterized by foreshortening 

• More distant objects appear smaller 

• Parallel lines appear to converge 

• Rudimentary perspective in cave drawings:

Lascaux, France  
source: Wikipedia
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Discovery of Perspective

• Foundation in geometry (Euclid)

Mural from 
Pompeii, Italy
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Middle Ages

• Art in the service of religion 

• Perspective abandoned or forgotten

Ottonian manuscript, 
ca. 1000
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Renaissance

• Rediscovery, systematic study of perspective

Filippo Brunelleschi 
Florence, 1415
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Projection (Viewing) in OpenGL

• Remember: camera is pointing in the  
 negative z direction
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Orthographic Viewing in OpenGL

• glOrtho(xmin, xmax, ymin, ymax, near, far)
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Perspective Viewing in OpenGL

• Two interfaces: glFrustum and gluPerspective 

• glFrustum(xmin, xmax, ymin, ymax, near, far);
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Field of View Interface

• gluPerspective(fovy, aspectRatio, near, far); 

•          and        as before 

• aspectRatio = 

• Fovy specifies field  
of view as  
height (   ) angle
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OpenGL code

void reshape(int x, int y) 
{ 
   glViewport(0, 0, x, y); 

   glMatrixMode(GL_PROJECTION); 
   glLoadIdentity(); 

   gluPerspective(60.0, 1.0 * x / y, 0.01, 10.0); 

   glMatrixMode(GL_MODELVIEW); 
}

36



Perspective Viewing Mathematically

•       = focal length 

•                         so  

• Note that      is non-linear in the depth    !
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Exploiting the 4th Dimension

Perspective projection is not affine: 

Idea: exploit homogeneous coordinates 

has no solution for

for arbitrary
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Perspective Projection Matrix

• Use multiple of point 

• Solve 

with
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Projection Algorithm

• Input: 3D point               to project 

• Form 

• Multiply       with                  ; obtaining 

• Perform perspective division:  
           ,           , 

• Output: 

• (last coordinate will be     )
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Perspective Division

• Normalize                          to 

• Perform perspective division after projection 

• Projection in OpenGL is more complex 
(includes clipping)
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Thanks!
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