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Mass-Spring Systems
The 101 of Physics Simulation

What do we want to simulate”? Deformable Objects
Design a model. Mass points + springs.

Write differential equations. Newton’s 2nd Law (Hooke)
Discretize equations. Integration methods for ODEs
Add interaction. Collision detection + response

Simulate!



Mass-Spring Systems

e Simulation of cloth based on deformable surfaces
(Polygonal mesh)

e Realistic simulation of cloth with different fabrics such as
wool, cotton, or silk for garment design




Facial Anhimation

e Simulation of facial expressions based on deformable
surfaces/volumes/muscles

 Animation of face models from speech and mimic
parameters

Thalmann



Medical Simulation

e Simulation of deformable soft tissue

» Surgical planning " ”
* Medical training - b YN

Teschner

Prediction of the surgical outcome
in craniofacial surgery

Kuehnapfel



Overview

Model and Physics

Implementation RHints
Time-Discretization
Collision Response

(Simulation Loop)



Mass-Point System

Discretization of an object into mass points (gas, fluid,
elastic object, inelastic object)

System with multiple mass centers (Planetary System)

Interaction between points | and |=#I based on internal
forces F;;“

All other forces at point i are external forces F™

Overall force F, = Fi;'" +F

. ) int
Fi}nt _ Fjlint E E Fij —t O
J
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Mass-Point System

* Discretization of an object into mass points
* Representation of forces between masses by springs

e Computation of dynamics



Mass-Points

Object sampled using mass points
Mass of object: M

Number of points: n

Mass of each point: m=M/n

(if uniformly distributed)

Simulate the motion of each mass point



Physically-based Equations

Equations that describe the behavior
of the system (i.e. the mass points)

Physically-based model:
Newton’s 2"d Law

EFiint & Fiext _ mai

Next: Model the forces
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Elastic Forces: Springs

F

-F

Spring stiffness is denoted as k
Initial spring length L
Current spring length /

Deformation linear w.r.t. force:

Hooke’s
F=‘k(l‘L) Law

Elasticity: Ability of a spring to return
to its initial form when the deforming

force is removed.

Simple mechanism for internal forces.



Elastic Energies

Elastic energy:

] 5
i E=—k(-L
1 LK-1)
Force = - Partial Derivative (Gradient)
- po O
i ox,
X, l_ P Force in vector notation:
X, — X
F,=—k(I-L)——

Force-centered view versus enerqgy-centered view



Forces at a Mass Point

Internal forces F™

me{l 2 3}

External forces F

Gravity
Contact forces
All forces that are
not caused by springs

Resulting force at poinit

Fi _ Fiint + Fiext



Dissipative Forces

FrI——

Damping
Friction

Fdamping(t)= —y V(t)



System Equations

Equation of Motion for one mass point (3 egs.)

5 _g )

Equation of Motion for a system of mass points (3n egs.)

d*X(¢)

dtz _ Fint (t)+ Fext (t)

M

M is a diagonal matrix



System Equations

Incorporation of damping

dZX(t)+ o dX(7)

__ pint ext
— n =F™(¢)+ F™(¢)

M
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Model and Physics

Implementation RHints
Time-Discretization
Collision Response

(Simulation Loop)
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Elastic Spring

class SPRING

{

public:

POINT *pointl;
POINT *point2;

float
float
float

stiffness;

initialLength;
currentLength;

// k

// L
// 1
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Mass Point

class POINT
{
public:

float
float
float
float
float

mass;
position[3];
velocity[3];
force[3];
damping;
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Force Computation

for all points
point 1i.ClearForce ()
point 1.AddGravityForce ()

//Add other external forces
for all springs

spring i.ComputeElasticForce ()
spring 1.AddForceToEndPoints ()
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Overview

Model and Physics

Implementation RHints
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Collision Response

(Simulation Loop)
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System Equations

System of 3n 2" order Ordinary Differential Equations (ODE)

de(t)+ Ddx_(’) =F"(t)+F(r)

M 2
dt dt

One 2" order ODE (1-dimensional problem)

- dzx(t)+ ’ dx(t)

dt’ dt

= F(¢)

Initial value problem: x(0) and v(0) are known
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Solution

a) Analytical solution (if we care about the exact state at time t)

b) Discrete solution

- Graphics: the goal is to display the state at t;

- Find solution at discrete time instants t;, assuming that we know
previous solutions t,_, t, ,, etc.

- We do not care about the steady state error, but we want

plausible behavior and response to external forces

23



Problem

- We have:
— Initial position x
— Initial velocity v
— 2nd derivative of position x with respect to time

o) B0
dt’ m,

I

« Goal: Computation of position x over time



Numerical Integration Methods

Explicit Integration

— Euler

— Leapfrog

— Heun

— Midpoint

— Runge-Kutta methods

Implicit Integration
— Backward Euler

Predictor-Corrector methods
— Qear

Methods for higher order ODEs
— Verlet
— Beeman

Variable time-step methods

25



Numerical Integration Methods

« Reduction of a second-order ODE to two coupled first-
order ODEs.

2
- d xiz(t)ﬂ' dxi(t) .
dt dt

o
dx‘(t)=vi(t) dvi(t)=Fi (t)—)’vi(t)

/ dt dt \ m,
velocity acceleration

8

—
—_— .
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Explicit Integration

- Initial value f(t,)
- Compute the derivative

) Error O(h?) at t,
— . Move fromt,tot +h
/ using the derivative at t,
t t.+ht
Euler Method

Leonard Euler:
1707 (Basel) —1783 (St. Petersburg)

2l



Explicit Integration

£l +)= £ )+ 1)+ 10+
ft,+h)= ft, )+ h- 1, )+ O(h*)

f(to "'h)E f(to)"'h'f'(to)

Taylor series

Euler method
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Explicit Integration

YO)-v()  v()-FO-r0

Start with

initial values X(to )= X, V(to )= Vo

Compute

Assume

Compute

Compute

V'(to) x'(to)

v'(t)= v'(to) x'(t)= x'(to) tyst<st,+h
x(tO + h)= x(tO )+ hx' (tO )= x(t0 )+ hv(to)

o+ 1)= v, J+ v )= v(e, )+ nELe );1 ()

F(t) is computed from x(t) and external forces!
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Error Accumulation

RV W AW =¥ {13

Euler step from t, to t_+h

x(t, +h)=x(t,)+hv(t,) v, +7)=v(r, )+ hF(t )m}’V(t

x(to + 2h) >%

Euler step v(t, +2h)=v(z, +h)+hF(t +h)-rv{t, +h)
from t_+h to t_+2h m
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Problems

-Numerical integration is inaccurate.

Fexm)= 1)+ 1 @n+06 )

Euler step Error

Inaccuracy can cause instability.

Error

2
Ose<%'f"(te), t, E[t,t+h]
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Improving Accuracy - Leap Frog

V(t+h/2) = v(t—h/2)+h-a(t) ErrorO(h3)

time step h is significantly

x(t + h) - x(t) b V(t ' h/2) larger compared to Euler

Implementation

Euler

Leapfrog

addForces(); // F(t)
positionEuler(h); // x=x(t+h)=x(t)+hv(t)
velocityEuler(h); //v=v(t+h)=v(t)+ha(t)

initV() // v(o) = v(o) — h/2a(0)

addForces(h);  //F(t)
velocityEuler(h); //v=v(t+h)=v(t)+ha(t)
positionEuler(h); // x=x(t+h)=x(t)+hv(t+h)

(In practice, it is irrelevant that velocities are computed at mid time steps)
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Improving Accuracy - Runge Kutta

2nd order (midpoint method)

Euler Method . Runge-Kutta Methods
Error O(h?) f(t) >a Error O(h3)
s e
N 2b C
t, t.+h © t. t,+h/2  t, +h
. Compute the derivative at t, « Compute the derivative at t,,

« Move to t, +h/2

- Compute the derivative at t_, +h/2

« Move fromt tot, +h
using the derivative at t, +h/2

Second order R-K also called “midpoint”

« Move from t_ to t_ +h using the
derivative at
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Midpoint vs Euler

60

0 2 4

-Green = Midpoint
-Blue = Euler
‘h=1vs.h=1/4

60,
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Implementation

Euler Method

Straightforward:
Compute spring forces
Add external forces

- Update positions

- Update velocities

Runge-Kutta Methods

- Compute spring forces
- Add external forces

- Compute auxiliary positions and
velocities

—once for second-order

—three times for fourth-order

- requires additional data copies
- Update positions
- Update velocities
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Avoiding Instability

No general solution to avoid instability for complex
mass-point systems.

A smaller time step increases the chance for stability.
A larger time step speeds up the simulation.

Parameters and topology of the mass-point system,

and external forces influence the stability of a system.

Increasing damping does not always help.
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Topology and Stability

- Stable model topologies stable
with respect to deformation but not
not stable general
stable

can be generated automatically by copying the surface to an
inner layer and connecting both — layered model

in the extreme case, consider the inner layer to be just a point

/ much more resistant in @
- Design problem direction than in S

direction.
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Volumetric Models - Tet Meshes

1349 mass points
4562 tets
6888 springs

2949 mass points
10257 tets

15713 springs

8 mass points
5 tets

3
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Topology Ambiguity Problem

« Una ' ' ' '
ppropriate topology lethout diagonal springs o aleata
« No force penalty for shearing to these two planes

- Appropriate topology with diagonal springs
- However, self-collision problem, springs have no notion of volume

equilibrium 2

original equilibrium 1

39



Cloth Forces

- Types of forces in cloth: stretch, bending, shear

- Bending cannot be modeled with a simple network of springs

40



Cloth Springs

- Combine level-1and level-2 springs

Level 1 for stretch
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Cloth Springs

- Combine level-1 and level-2 springs

Level 2 for bending

42



Cloth Springs
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