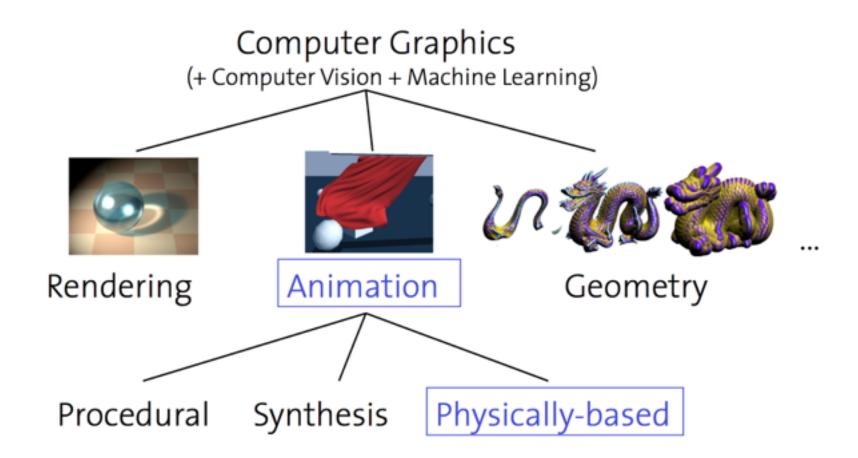
CSCI 420 Computer Graphics

13.2 Physically Based Simulation I

Visual Computing



Animation

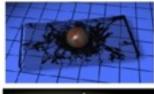
- Animation from anima (lat.)
 - = soul, spirit, breath of life
- Bring images to life!
- Examples
 - Character animation (humans, animals)
 - Secondary motion (hair, cloth)
 - Physical world (rigid bodies, water, fire)

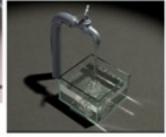
Animation Techniques

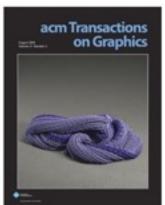
- For character animation
 - Keyframing
 - Motion capturing / motion synthesis
- For secondary motion, physical effects
 - Procedural
 - Simulation (physically based animation)

Physics in Computer Graphics

- Very common
- Computer Animation, Modeling (computational mechanics)
- Rendering (computational optics)

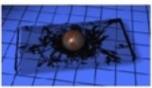


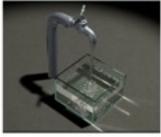


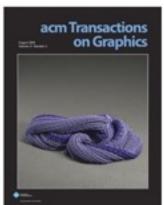


Physics in Computer Animation

- Fluids
- Smoke
- Deformable strands (rods)
- Cloth
- Solid 3D deformable objects and many more!

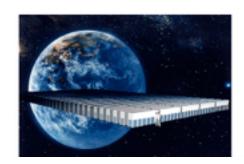






Physical Simulation

- Equations known for a long time
 - Motion (Newton, 1660) $\frac{d/dt(m\mathbf{v}) = \mathbf{f}}{d}$
 - Elasticity (Hooke, 1670)
 - Fluids (Navier, Stokes, 1822) $\rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -k\nabla\rho + \rho\mathbf{g} + \mu\nabla^2\mathbf{v}$
- Simulation made possible by computers
 - 1938: Zuse 1, 0.2 flops,
 - 2008: Roadrunner, 122k cores, 1026 teraflops



Scientific Goals and Challenges

- Goal of scientific computations
 - Reproduction of physical phenomena
 - Substitute for real experiments
- Goal of physically-based animation
 - Imitation of physical phenomena
 - Visually plausible behavior
 - As much realism as possible within performance and stability constraints
- →Different goals require different methods/ representations...

Offline Physics

- Special effects (film, commercials)
- Large models: millions of particles / tetrahedra / triangles
- Use computationally expensive rendering (global illumination)
- Impressive results
- Many seconds of computation time per frame

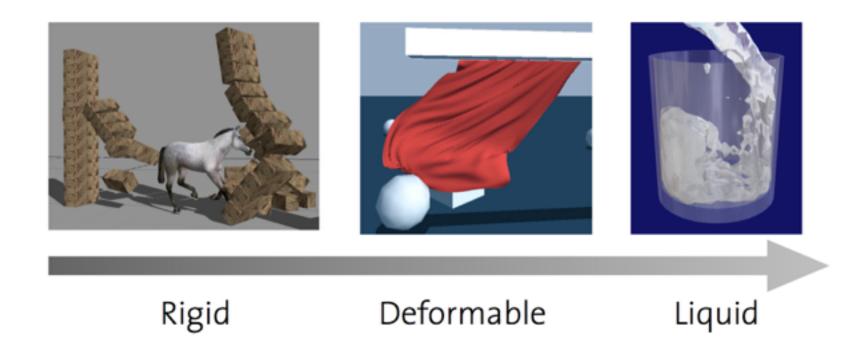
Real-time Physics

- Interactive systems: computer games virtual medicine (surgical simulation)
- Must be fast (30 fps, preferably 60 fps for games)
 Only a small fraction of CPU time devoted to physics!
- Has to be stable, regardless of user input

Flight/car Simulators

3D Games

Examples



Fluids

Enright, Marschner, Fedkiw, SIGGRAPH 2002

Fluids and Rigid Bodies



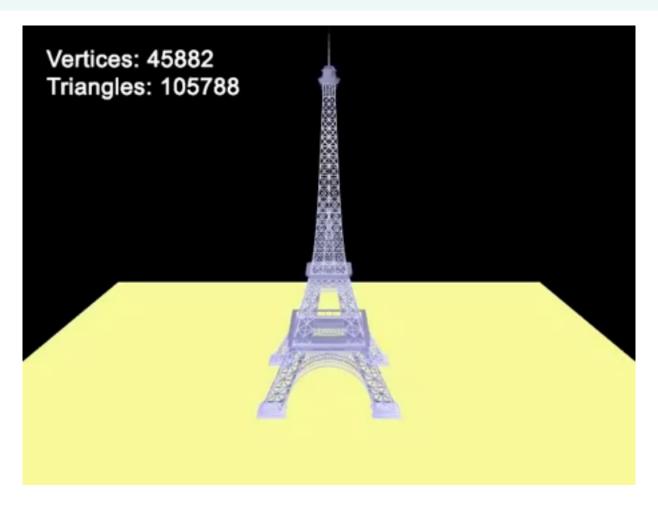
Fluids with Deformable Solid

[Robinson-Mosher, Shinar, Gretarsson, Su, Fedkiw, SIGGRAPH 2008]

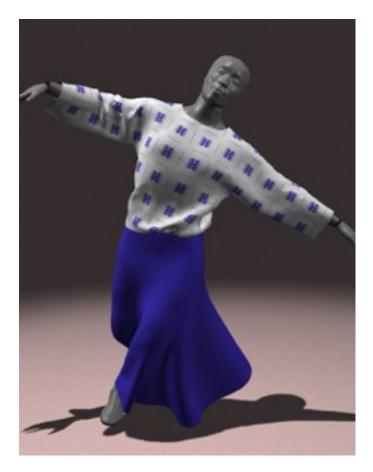
Two-way Coupling of Fluids to Rigid and Deformable Solids and Shells

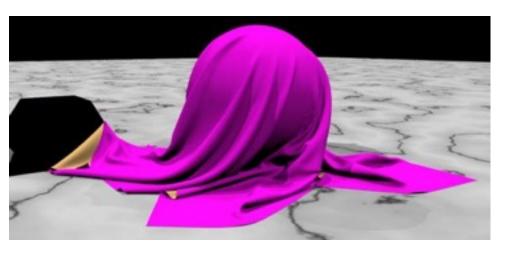
Avi Robinson-Mosher Tamar Shinar Jon Gretarsson Jonathan Su Ronald Fedkiw

Deformations



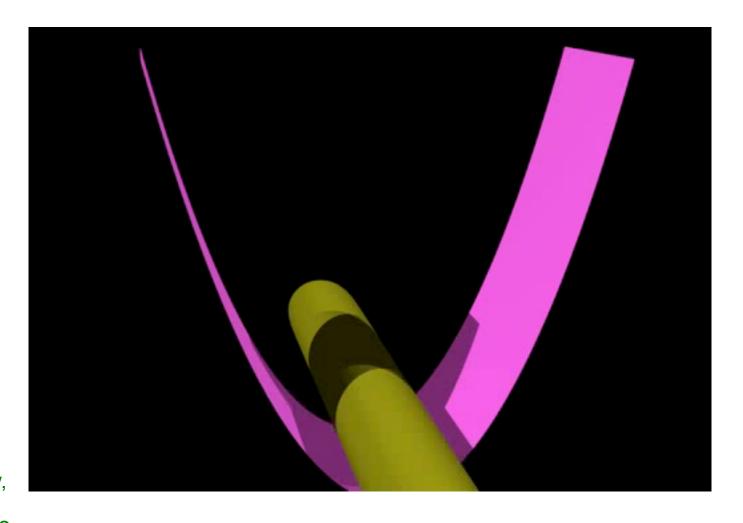
Cloth





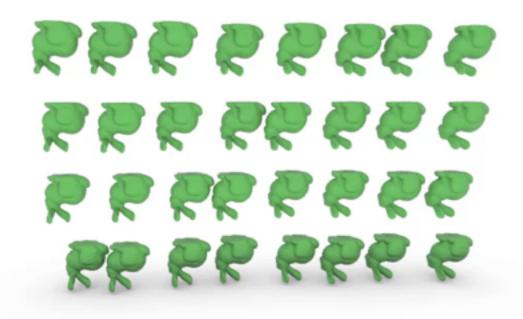
Source: ACM SIGGRAPH

Cloth (Robustness)

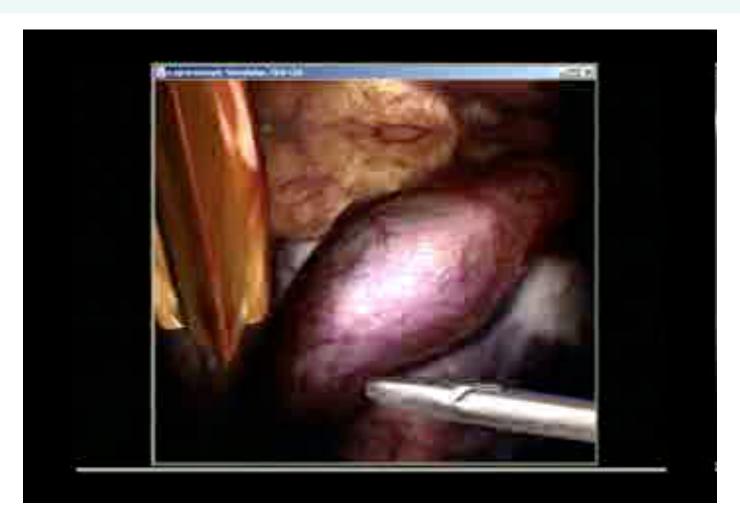


[Bridson, Fedkiw, Anderson, ACM SIGGRAPH 2002

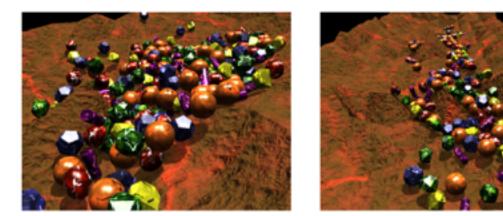
Multibody Dynamics + Self-collision Detection

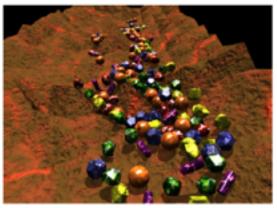


Surgical Simulation



Multibody Dynamics





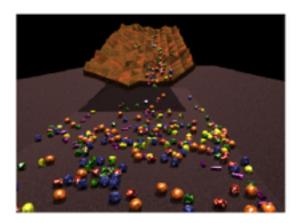


Figure 1: Avalanche: 300 rocks tumble down a mountainside.

Physics in Games

Real-Time Deformation and Fracture in a Game Environment

Eric Parker

Pixelux Entertainment

James O'Brien U.C. Berkeley

Video Edited by Sebastian Burke

From the proceedings of SCA 2009, New Orleans

Sound Simulation (Acoustics)

Techniques

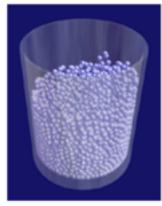
- Particle systems
 - Fire, smoke, water ...
- Mass-spring systems
 - Deformable objects, cloth ...
- Rigid body simulation
 - Cars, airplanes, furniture ...
- Grid based methods
 - Water, smoke, airflow ...
- Finite Elements
 - Accurate deformable objects ...

Particle System

Snow, dust, sand

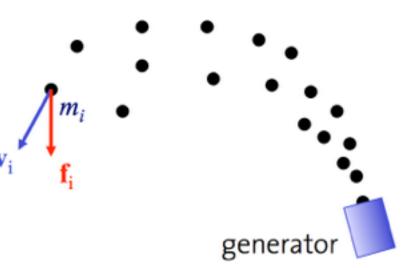
Fire

Smoke



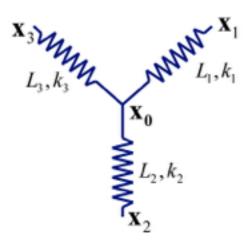
Particle System

- Collection of many small simple particles
- Particle motion influenced by forces
- Generated by emitters
- Deleted when lifetime reached or out of scene



Mass-Spring Systems

- Particle system + springs
- Special interaction force
- Issues:
 - Where to put springs
 - Choice of stiffnesses
 - Collision detection
 - Collision response
 - Stability (time step or stiffness too high)



Applications

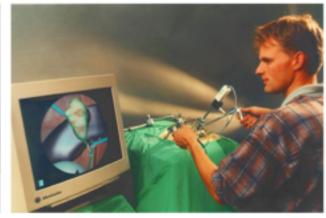
Facial animation

Thalmann

Cloth simulation

Strasser

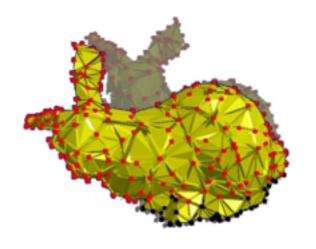
Surgery simulation



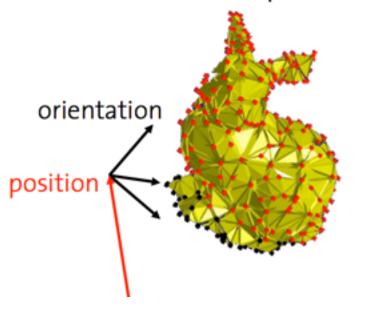
Kuehnapfel

Rigid Body Simulation

- Deformable objects have many degrees of freedom
- Each vertex is simulated separately



- A rigid body only has 6 degrees of freedom
- Faster simulation possible



Challenges

Collision detection

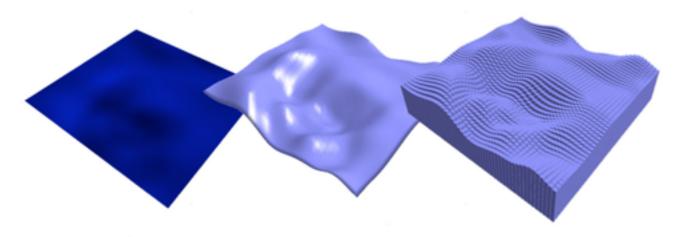
 Collision response for complex configurations

Constraints (joints)

Applications

- Robotic simulations
- 3D computer games

Grid-Based Methods



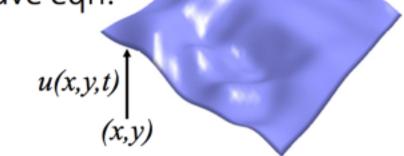
- Basic idea:
 - Solve partial differential equation on (regular) grid
 - Replace differentials by finite differences

Example: Fluid Surface

 Water surface defined as height u(x,y,t) at location x,y at time t

Dynamics given by 2D wave eqn:

$$\frac{\partial^2}{\partial t^2}u = c^2(\frac{\partial^2}{\partial x^2}u + \frac{\partial^2}{\partial y^2}u)$$



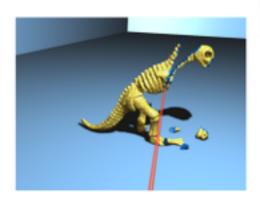
Discretization:

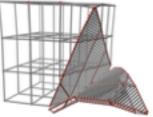
$$\begin{split} v^{t+1}[i,j] &= v^t[i,j] + \Delta t \, c^2 \, \frac{u^t[i+1,j] + u^t[i-1,j] + u^t[i,j+1] + u^t[i,j-1] - 4u^t[i,j]}{h^2} \\ u^{t+1}[i,j] &= u^t[i,j] + \Delta t \, v^{t+1}[i,j] \end{split}$$

FEM Simulation

 Discretize equations from continuum mechanics

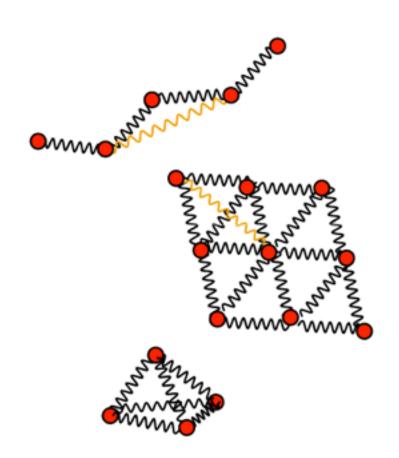
- Solve (more) accurately
- Independent of tesselation
- Volumetric meshes





Case Study: Mass-spring

Mass particles



Newton's Laws

Newton's 2nd law:

$$\vec{F} = m\vec{a}$$

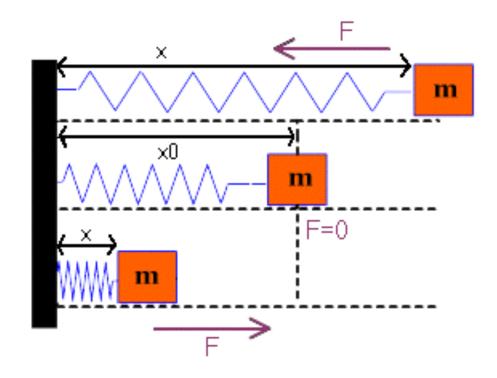
- Gives acceleration, given the force and mass
- Newton's 3rd law: If object A exerts a force F on object B, then object B is at the same time exerting force -F on A

Single spring

Obeys the Hook's law:

$$F = k (x - x_0)$$

- $x_0 = rest length$
- k = spring elasticity (stiffness)
- For x<x₀, spring wants to extend
- For x>x₀, spring
 wants to contract



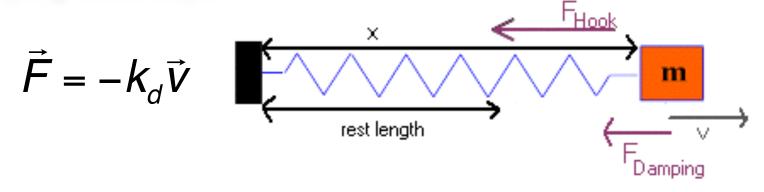
Hook's law in 3D

- Assume A and B two mass points connected with a spring.
- Let L be the vector pointing from B to A
- Let R be the spring rest length
- Then, the elastic force exerted on A is:

$$\vec{F} = -k_{Hook}(|\vec{L}| - R) \frac{\vec{L}}{|\vec{L}|}$$

Damping

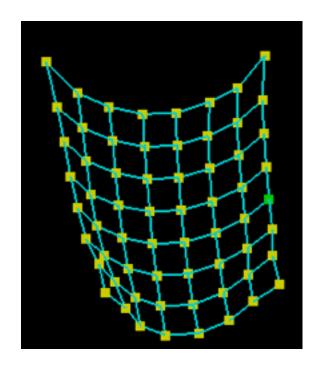
- Springs are not completely elastic
- They absorb some of the energy and tend to decrease the velocity of the mass points attached to them
- Damping force depends on the velocity:



- k_d = damping coefficient
- k_d different than k_{Hook}!!

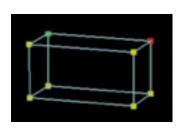
A network of springs

- Every mass point connected to some other points by springs
- Springs exert forces on mass points
 - Hook's force
 - Damping force
- Other forces
 - External force field
 - Gravity
 - Electrical or magnetic force field
 - Collision force

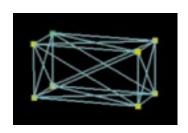


Network organization is

 For stability, must organize the network of springs in some clever way



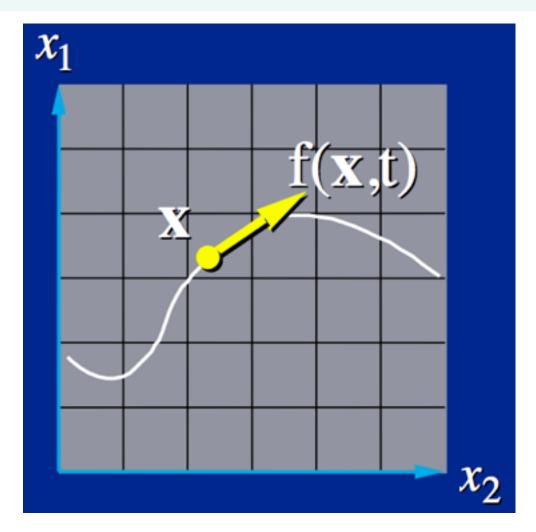
Basic network



Stable network

Network out of control

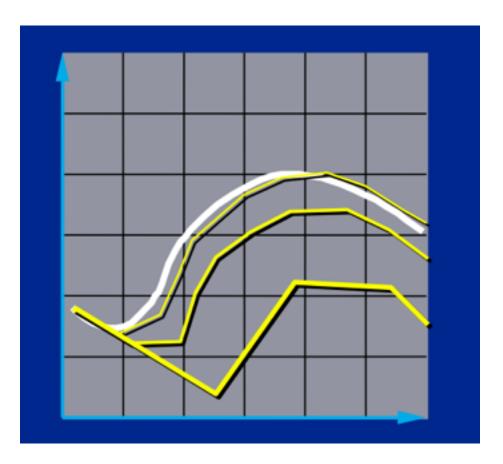
Time Integration



Physics equation: x' = f(x,t)

x=x(t) is particle trajectory

Euler Integration

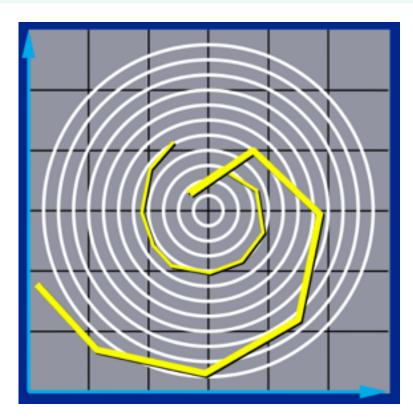


Simple, but inaccurate.

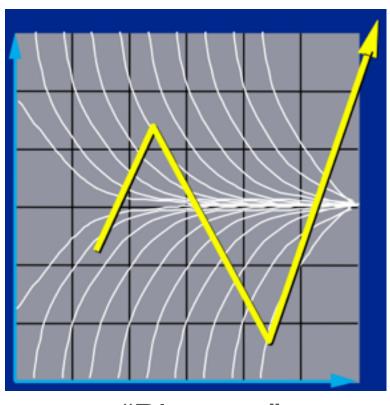
Unstable with large timesteps.

Source: Andy Witkin, SIGGRAPH

Inaccuracies with explicit

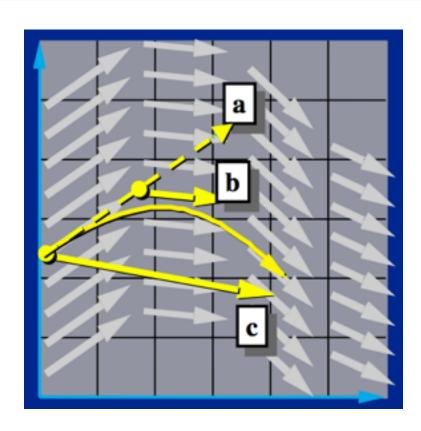


Gain energy



"Blow-up"

Midpoint Method



Source: Andy Witkin, SIGGRAPH

Improves stability

- 1. Compute Euler step $\Delta x = \Delta t f(x, t)$
- 2. Evaluate f at the midpoint $f_{mid} = f((x+\Delta x)/2, (t+\Delta t)/2)$
- 3. Take a step using the midpoint value

$$x(t + \Delta t) = x(t) + \Delta t f_{mid}$$

Many more methods

- Runge-Kutta (4th order and higher orders)
- Implicit methods
 - sometimes unconditionally stable
 - very popular (e.g., cloth simulations)
 - a lot of damping with large timesteps
- Symplectic methods
 - exactly preserve energy, angular momentum and/or other physical quantities
 - Symplectic Euler

Cloth Simulation

- Stretch

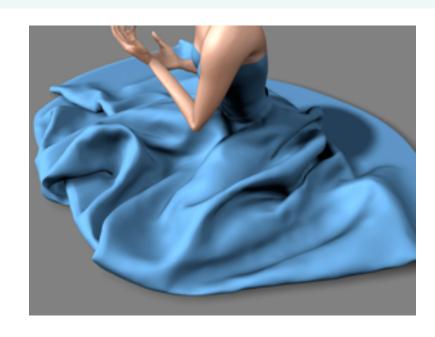
- Shear

- Bend

[Baraff and Witkin, SIGGRAPH 1998]

Challenges

- Complex Formulas
- Large Matrices
- Stability
- Collapsing triangles
- Self-collision detection

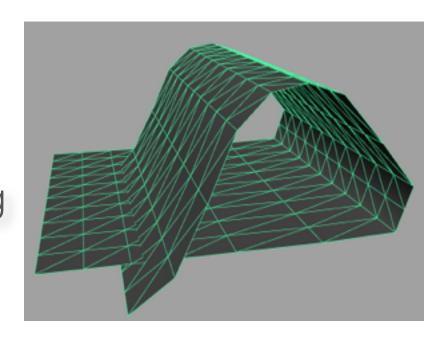


[Govindaraju et al. 2005]

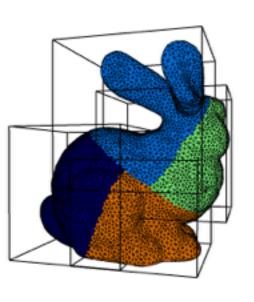
Self-collisions: definition

Deformable model is self-colliding iff

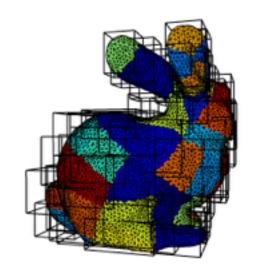
there exist non-neighboring intersecting triangles.



Bounding volume hierarchies



AABBs Level 1



AABBs Level 3

[Hubbard 1995]

[Gottschalk et al. 1996]

[van den Bergen 1997]

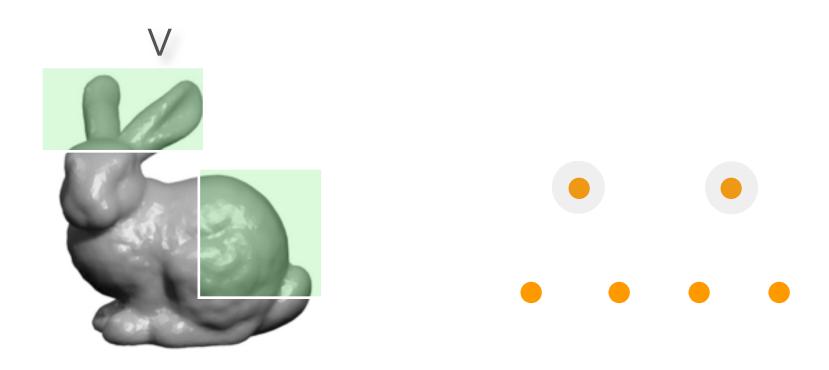
[Bridson et al. 2002]

[Teschner et al. 2002]

[Govindaraju et al. 2005]

Bounding volume hierarchy

Bounding volume hierarchy



Real-time cloth simulation

Source: Andy Pierce

Model	Triangles	FPS	% Forces + Stiffness Matrix	% Solver
Curtain	2400	25	67	33

http://cs420.hao-li.com

Thanks!

