4.2 Splines
Roller coaster

- Next programming assignment involves creating a 3D roller coaster animation

- We must model the 3D curve describing the roller coaster, but how?
Modeling Complex Shapes

• We want to build models of very complicated objects

• Complexity is achieved using simple pieces
 - polygons,
 - parametric curves and surfaces, or
 - implicit curves and surfaces

• This lecture: parametric curves
What Do We Need From Curves in Computer Graphics?

- Local control of shape (so that easy to build and modify)
- Stability
- Smoothness and continuity
- Ability to evaluate derivatives
- Ease of rendering
Curve Representations

- **Explicit:** \(y = f(x) \)
 - Must be a function (single-valued)
 - Big limitation—vertical lines?

- **Parametric:** \((x, y) = (f(u), g(u))\)
 - Easy to specify, modify, control
 - Extra “hidden” variable \(u\), the parameter

- **Implicit:** \(f(x, y) = 0 \)
 - \(y\) can be a multiple valued function of \(x\)
 - Hard to specify, modify, control
Parameterization of a Curve

• *Parameterization* of a curve: how a change in u moves you along a given curve in xyz space.

• Parameterization is not unique. It can be slow, fast, with continuous / discontinuous speed, clockwise (CW) or CCW...
 Polynomial Interpolation

• An n-th degree polynomial fits a curve to n+1 points
 - called Lagrange Interpolation
 - result is a curve that is too wiggly, change to any control point affects entire curve (non-local)
 - this method is poor

• We usually want the curve to be as smooth as possible
 - minimize the wiggles
 - high-degree polynomials are bad

Lagrange interpolation, degree=15
Polynomial Approximation

Polynomials are computable functions

\[f(t) = \sum_{i=0}^{p} c_i t^i = \sum_{i=0}^{p} \tilde{c}_i \phi_i(t) \]

Taylor expansion up to degree \(p \)

\[g(h) = \sum_{i=0}^{p} \frac{1}{i!} g^{(i)}(0) h^i + O(h^{p+1}) \]

Error for approximation \(g \) by polynomial \(f \)

\[f(t_i) = g(t_i), \quad 0 \leq t_0 < \cdots < t_p \leq h \]

\[|f(t) - g(t)| \leq \frac{1}{(p+1)!} \max f^{(p+1)} \prod_{i=0}^{p} (t - t_i) = O(h^{p+1}) \]
Spline Surfaces

Piecewise polynomial approximation

\[f(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{m} c_{ij} N_i^n(u) N_j^m(v) \]
Spline Surfaces

Piecewise polynomial approximation

Geometric constraints
• Large number of patches
• Continuity between patches
• Trimming

Topological constraints
• Rectangular patches
• Regular control mesh
Splines: Piecewise Polynomials

- A spline is a *piecewise polynomial*: Curve is broken into consecutive segments, each of which is a low-degree polynomial interpolating (passing through) the control points.

- *Cubic* piecewise polynomials are the most common:
 - They are the lowest order polynomials that
 1. interpolate two points and
 2. allow the gradient at each point to be defined (C¹ continuity is possible)
 - Piecewise definition gives local control
 - Higher or lower degrees are possible, of course
Piecewise Polynomials

- Spline: many polynomials pieced together
- Want to make sure they fit together nicely

- C_0 continuity: Continuous in position
- C_0 & C_1 continuity: Continuous in position and tangent vector
- C_0 & C_1 & C_2 continuity: Continuous in position, tangent, and curvature
Splines

• Types of splines:
 - Hermite Splines
 - Bezier Splines
 - Catmull-Rom Splines
 - Natural Cubic Splines
 - B-Splines
 - NURBS

• Splines can be used to model both curves and surfaces
Cubic Curves in 3D

- Cubic polynomial:
 \[p(u) = au^3 + bu^2 + cu + d \]

 \[= \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} a & b & c & d \end{bmatrix} \]

 - \(a, b, c, d \) are 3-vectors, \(u \) is a scalar

- Three cubic polynomials, one for each coordinate:
 - \(x(u) = a_x u^3 + b_x u^2 + c_x u + d_x \)
 - \(y(u) = a_y u^3 + b_y u^2 + c_y u + d_y \)
 - \(z(u) = a_z u^3 + b_z u^2 + c_z u + d_z \)

- In matrix notation:
 \[\begin{bmatrix} x(u) & y(u) & z(u) \end{bmatrix} = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ d_x & d_y & d_z \end{bmatrix} \]

- Or simply:
 \[p = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} A \]
Cubic Hermite Splines

We want a way to specify the end points and the slope at the end points!
Deriving Hermite Splines

- Four constraints: value and slope (in 3-D, position and tangent vector) at beginning and end of interval [0,1]:
 \[p(0) = p_1 = (x_1, y_1, z_1) \]
 \[p(1) = p_2 = (x_2, y_2, z_2) \]
 \[p'(0) = \overline{p_1} = (\overline{x_1}, \overline{y_1}, \overline{z_1}) \]
 \[p'(1) = \overline{p_2} = (\overline{x_2}, \overline{y_2}, \overline{z_2}) \]

- Assume cubic form: \[p(u) = au^3 + bu^2 + cu + d \]

- Four unknowns: \(a, b, c, d \)
Deriving Hermite Splines

• Assume cubic form: \(p(u) = au^3 + bu^2 + cu + d \)

 \[
 \begin{align*}
 p_1 &= p(0) = d \\
 p_2 &= p(1) = a + b + c + d \\
 \overline{p_1} &= p'(0) = c \\
 \overline{p_2} &= p'(1) = 3a + 2b + c
 \end{align*}
 \]

• Linear system: 12 equations for 12 unknowns
 (however, can be simplified to 4 equations for 4 unknowns)

• Unknowns: \(a, b, c, d \) (each of \(a, b, c, d \) is a 3-vector)
Rewrite this 12x12 system as a 4x4 system:

\[\begin{align*}
d &= p_1 \\
a + b + c + d &= p_2 \\
c &= \overline{p_1} \\
3a + 2b + c &= \overline{p_2}
\end{align*}\]

\[
\begin{bmatrix}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
a_x & a_y & a_z \\
b_x & b_y & b_z \\
c_x & c_y & c_z \\
d_x & d_y & d_z
\end{bmatrix} =
\begin{bmatrix}
x_1 & y_1 & z_1 \\
x_2 & y_2 & z_2 \\
\overline{x_1} & \overline{y_1} & \overline{z_1} \\
\overline{x_2} & \overline{y_2} & \overline{z_2}
\end{bmatrix}
\]
The Cubic Hermite Spline Equation

After inverting the 4x4 matrix, we obtain:

\[
\begin{bmatrix}
 x & y & z \\
\end{bmatrix} = \begin{bmatrix}
 u^3 & u^2 & u & 1 \\
\end{bmatrix}
\begin{bmatrix}
 2 & -2 & 1 & 1 \\
 -3 & 3 & -2 & -1 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 \bar{x}_1 & \bar{y}_1 & \bar{z}_1 \\
 \bar{x}_2 & \bar{y}_2 & \bar{z}_2 \\
\end{bmatrix}
\]

- This form is typical for splines
 - basis matrix and meaning of control matrix change with the spline type
Four Basis Functions for Hermite Splines

Every cubic Hermite spline is a linear combination (blend) of these 4 functions.

$$p(u) = \begin{bmatrix} 2u^3 - 3u^2 + 1 \\ -2u^3 + 3u^2 \\ u^3 - 2u^2 + u \\ u^3 - u^2 \end{bmatrix}^T \begin{bmatrix} p_1 \\ p_2 \\ \bar{p}_1 \\ \bar{p}_2 \end{bmatrix}$$
Piecing together Hermite Splines

• It's easy to make a multi-segment Hermite spline:
 - each segment is specified by a cubic Hermite curve
 - just specify the position and tangent at each “joint” (called knot)
 - the pieces fit together with matched positions and first derivatives
 - gives C1 continuity
Hermite Splines in Adobe Illustrator
Bezir Splines

• Variant of the Hermite spline

• Instead of endpoints and tangents, four control points
 - points \(P_1 \) and \(P_4 \) are on the curve
 - points \(P_2 \) and \(P_3 \) are off the curve
 - \(p(0) = P_1, p(1) = P_4 \)
 - \(p'(0) = 3(P_2 - P_1), p'(1) = 3(P_4 - P_3) \)

• Basis matrix is derived from the Hermite basis (or from scratch)

• Convex Hull property: curve contained within the convex hull of control points

• Scale factor “3” is chosen to make “velocity” approximately constant
The Bezier Spline Matrix

\[
\begin{bmatrix}
x & y & z
\end{bmatrix} =
\begin{bmatrix}
u^3 & u^2 & u & 1
\end{bmatrix}
\begin{bmatrix}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 & y_1 & z_1 \\
x_2 & y_2 & z_2 \\
x_3 & y_3 & z_3 \\
x_4 & y_4 & z_4
\end{bmatrix}
\]

Hermite basis
Bezifier to Hermite
Bezifier control matrix

\[
= \begin{bmatrix}
u^3 & u^2 & u & 1
\end{bmatrix}
\begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 & y_1 & z_1 \\
x_2 & y_2 & z_2 \\
x_3 & y_3 & z_3 \\
x_4 & y_4 & z_4
\end{bmatrix}
\]

Bezier basis
Bezier control matrix
Bezier Blending Functions

- Also known as the order 4, degree 3 Bernstein polynomials
- Nonnegative, sum to 1
- The entire curve lies inside the polyhedron bounded by the control points

\[
p(t) = \begin{bmatrix} (1 - t)^3 \\ 3t(1 - t)^2 \\ 3t^2(1 - t) \\ t^3 \end{bmatrix}^T \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}
\]
DeCasteljau Construction

Efficient algorithm to evaluate Bezier splines. Similar to Horner rule for polynomials. Can be extended to interpolations of 3D rotations.
Catmull-Rom Splines

- Roller-coaster (next programming assignment)
- With Hermite splines, the designer must arrange for consecutive tangents to be collinear, to get C^1 continuity. Similar for Bezier. This gets tedious.
- Catmull-Rom: an interpolating cubic spline with built-in C^1 continuity.
- Compared to Hermite/Bezier: fewer control points required, but less freedom.
Constructing the Catmull-Rom Spline

• Suppose we are given n control points in 3-D: p_1, p_2, \ldots, p_n

• For a Catmull-Rom spline, we set the tangent at p_i to

 \[s \times (p_{i+1} - p_{i-1}) \text{ for } i = 2, \ldots, n - 1 \text{ for some } s \text{ (often } s = 0.5) \]

• s is tension parameter: determines the magnitude (but not direction!) of the tangent vector at point p_i

• What about endpoint tangents? Use extra control points p_0, p_{n+1}

• Now we have positions and tangents at each knot. This is a Hermite specification. Now, just use Hermite formulas to derive the spline

• Note: curve between p_i and p_{i+1} is completely determined by $p_{i-1}, p_i, p_{i+1}, p_{i+2}$
Catmull-Rom Spline Matrix

\[
\begin{bmatrix}
 x & y & z
\end{bmatrix} =
\begin{bmatrix}
 u^3 & u^2 & u & 1
\end{bmatrix}
\begin{bmatrix}
 -s & 2 - s & s - 2 & s \\
 2s & s - 3 & 3 - 2s & -s \\
 s & 0 & 0 & 0 \\
 0 & 1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 x_3 & y_3 & z_3 \\
 x_4 & y_4 & z_4
\end{bmatrix}
\]

- Derived in way similar to Hermite and Bezier
- Parameter \(s \) is typically set to \(s = 1/2 \)
Splines with More Continuity?

• So far, only C^1 continuity

• How could we get C^2 continuity at control points?

• Possible answers:
 - Use higher degree polynomials

 $degree \ 4 = \text{quartic}, \ degree \ 5 = \text{quintic}, \ ... \ but \ these \ get$

 computationally expensive, and sometimes wiggly

 - Give up local control \rightarrow natural cubic splines

 A change to any control point affects the entire curve

 - Give up interpolation \rightarrow cubic B-splines

 Curve goes near, but not through, the control points
Comparison of Basic Cubic Splines

<table>
<thead>
<tr>
<th>Type</th>
<th>Local Control</th>
<th>Continuity</th>
<th>Interpolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hermite</td>
<td>YES</td>
<td>C1</td>
<td>YES</td>
</tr>
<tr>
<td>Bezier</td>
<td>YES</td>
<td>C1</td>
<td>YES</td>
</tr>
<tr>
<td>Catmull-Rom</td>
<td>YES</td>
<td>C1</td>
<td>YES</td>
</tr>
<tr>
<td>Natural</td>
<td>NO</td>
<td>C2</td>
<td>YES</td>
</tr>
<tr>
<td>B-Splines</td>
<td>YES</td>
<td>C2</td>
<td>NO</td>
</tr>
</tbody>
</table>

Summary:

Cannot get C2, interpolation and local control with cubics
Natural Cubic Splines

- If you want 2nd derivatives at joints to match up, the resulting curves are called \textit{natural cubic splines}.
- It's a simple computation to solve for the cubics' coefficients. (See \textit{Numerical Recipes in C} book for code.)
- Finding all the right weights is a \textit{global} calculation (solve tridiagonal linear system).
B-Splines

- Give up interpolation
 - the curve passes *near* the control points
 - best generated with interactive placement (because it’s hard to guess where the curve will go)
- Curve obeys the convex hull property
- C2 continuity and local control are good compensation for loss of interpolation
B-Spline Basis

- We always need 3 more control points than the number of spline segments

\[
M_{Bs} = \frac{1}{6} \begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 0 & 3 & 0 \\
1 & 4 & 1 & 0
\end{bmatrix}
\]

\[
G_{Bs_i} = \begin{bmatrix}
P_{i-3} \\
P_{i-2} \\
P_{i-1} \\
P_i
\end{bmatrix}
\]

\[
\begin{align*}
b_1(u) \\
b_2(u) \\
b_3(u)
\end{align*}
\]

\[
\begin{align*}
b_0(u)
\end{align*}
\]
Other Common Types of Splines

- Non-Uniform Splines
- Non-Uniform Rational Cubic curves (NURBS)
- NURBS are very popular and used in many commercial packages
How to Draw Spline Curves

• Basis matrix equation allows same code to draw any spline type

• **Method 1**: brute force
 - Calculate the coefficients
 - For each cubic segment, vary u from 0 to 1 (fixed step size)
 - Plug in u value, matrix multiply to compute position on curve
 - Draw line segment from last position to current position

• What’s wrong with this approach?
 - Draws in even steps of u
 - Even steps of u does not mean even steps of x
 - Line length will vary over the curve
 - Want to bound line length
 - **too long**: curve looks jagged
 - **too short**: curve is slow to draw
Method 2: recursive subdivision
- vary step size to draw short lines

```
Subdivide(u0,u1,maxlinelength)
umid = (u0 + u1)/2
x0 = F(u0)
x1 = F(u1)
if |x1 - x0| > maxlinelength
    Subdivide(u0,umid,maxlinelength)
    Subdivide(umid,u1,maxlinelength)
else drawline(x0,x1)
```

Variant on Method 2 - subdivide based on curvature
- replace condition in “if” statement with straightness criterion
- draws fewer lines in flatter regions of the curve
Summary

• Piecewise cubic is generally sufficient

• Define conditions on the curves and their continuity

• Most important:
 - basic curve properties
 (what are the conditions, controls, and properties for each spline type)
 - generic matrix formula for uniform cubic splines
 \[p(u) = u \mathbf{B} \mathbf{G} \]
 - given a definition, derive a basis matrix
 (do not memorize the matrices themselves)
http://cs420.hao-li.com

Thanks!