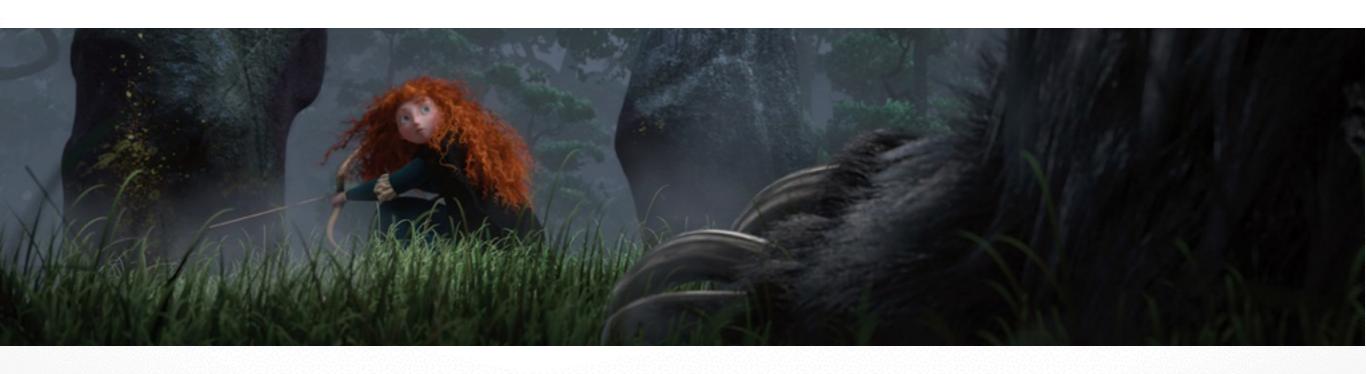
CSCI 420: Computer Graphics

14.1 Physically Based Simulation II

Mass-Spring Systems



Hao Li

http://cs420.hao-li.com

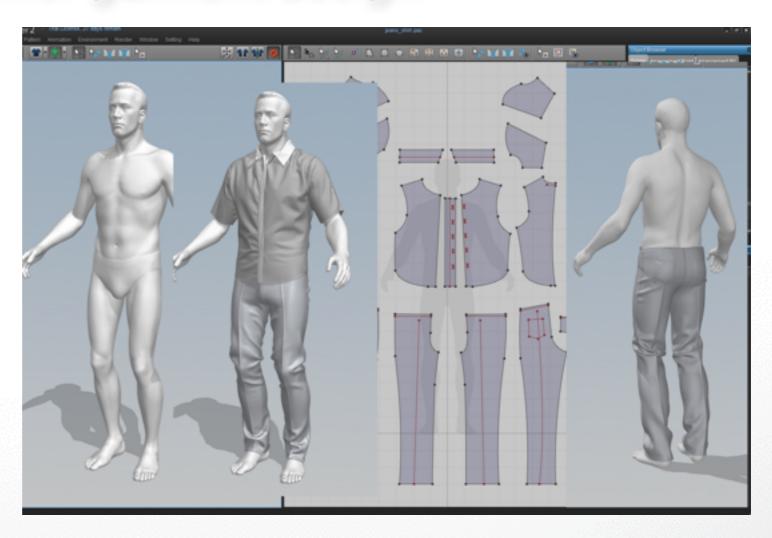
Mass-Spring Systems

The 101 of Physics Simulation

- What do we want to simulate? Deformable Objects
- Design a model. Mass points + springs.
- Write differential equations. Newton's 2nd Law (Hooke)
- Discretize equations. Integration methods for ODEs
- Add interaction. Collision detection + response
- Simulate!

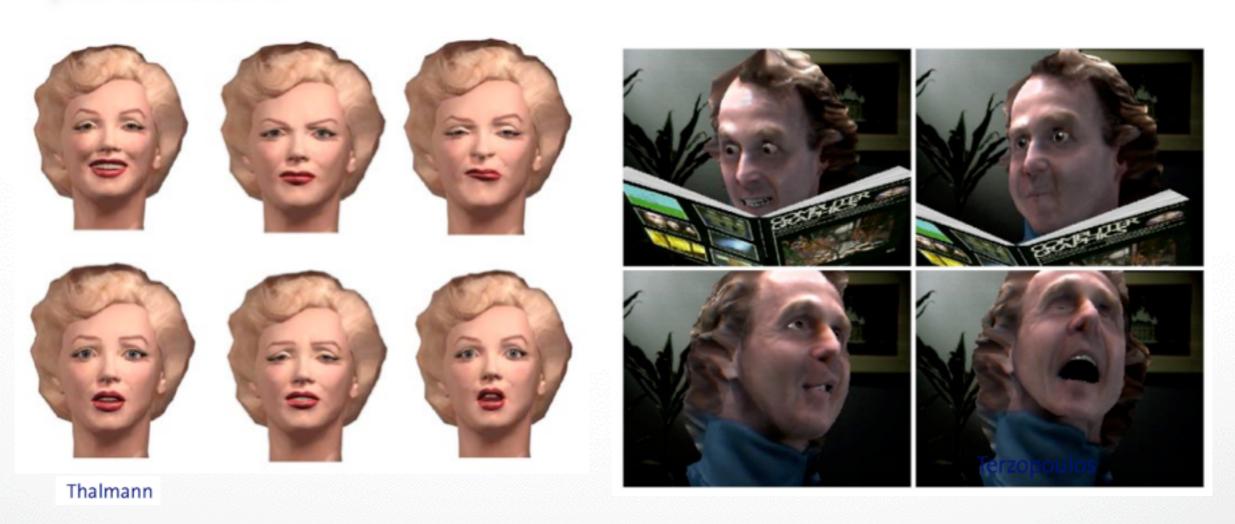
Mass-Spring Systems

- Simulation of cloth based on deformable surfaces (Polygonal mesh)
- Realistic simulation of cloth with different fabrics such as wool, cotton, or silk for garment design



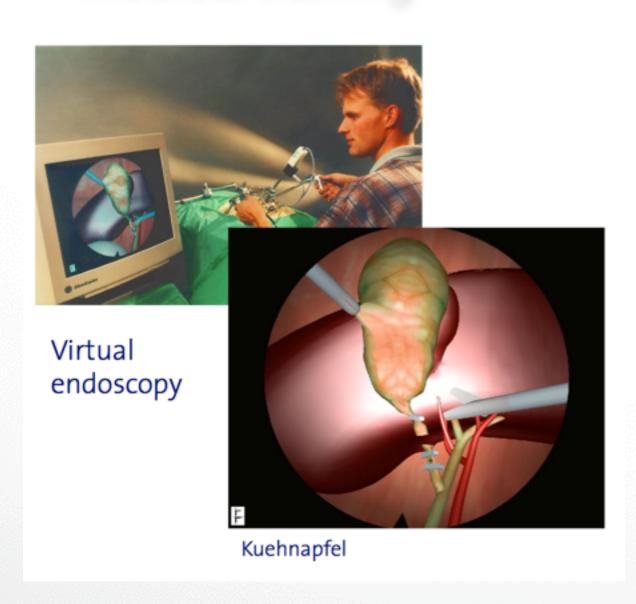
Facial Animation

- Simulation of facial expressions based on deformable surfaces/volumes/muscles
- Animation of face models from speech and mimic parameters



Medical Simulation

- Simulation of deformable soft tissue
- Surgical planning
- Medical training



Prediction of the surgical outcome in craniofacial surgery

Overview

- Model and Physics
- Implementation Hints
- Time-Discretization
- Collision Response
- (Simulation Loop)

Mass-Point System

- Discretization of an object into mass points (gas, fluid, elastic object, inelastic object)
- System with multiple mass centers (Planetary System)
- Interaction between points i and j \neq i based on internal forces \mathbf{F}_{ii}^{int}
- All other forces at point i are external forces \mathbf{F}_{i}^{ext}
- Overall force $F_i = F_{ij}^{int} + F_i^{ext}$

$$\mathbf{F_{ij}^{int}} = -\mathbf{F_{ji}^{int}} \qquad \qquad \sum_{i} \sum_{j} \mathbf{F_{ij}^{int}} = 0$$

Mass-Point System

- Discretization of an object into mass points
- Representation of forces between masses by springs
- Computation of dynamics

Mass-Points

Object sampled using mass points

Mass of object: M

Number of points: n

Mass of each point: m=M/n

(if uniformly distributed)

Simulate the motion of each mass point

Physically-based Equations

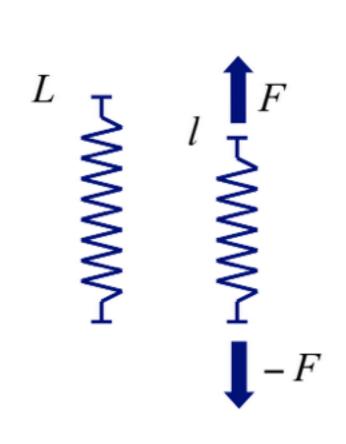
Equations that describe the behavior of the system (i.e. the mass points)

Physically-based model: Newton's 2nd Law

$$\sum \mathbf{F_i^{int}} + \mathbf{F_i^{ext}} = m\mathbf{a_i}$$

Next: Model the forces

Elastic Forces: Springs



Spring stiffness is denoted as *k* Initial spring length *L* Current spring length *l*

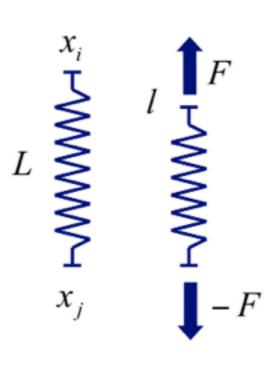
Deformation linear w.r.t. force:

$$F = -k(l-L)$$
 Hooke's Law

Elasticity: Ability of a spring to return to its initial form when the deforming force is removed.

Simple mechanism for internal forces.

Elastic Energies



Elastic energy:

$$E = \frac{1}{2}k(l-L)^2$$

Force = - Partial Derivative (Gradient)

$$F_i = -\frac{\partial E}{\partial x_i}$$

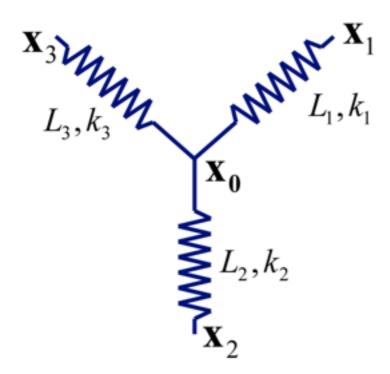
Force in vector notation:

$$F_i = -k(l-L)\frac{\mathbf{x}_i - \mathbf{x}_j}{l}$$

Force-centered view versus energy-centered view

Forces at a Mass Point

Internal forces Fint



$$\mathbf{F_{0}^{int}} = -\sum_{i|i \in \{1,2,3\}} k_{i} (l_{i} - L_{i}) \frac{\mathbf{X_{i}} - \mathbf{X_{0}}}{l_{i}}$$

External forces F^{ext}

Gravity
Contact forces
All forces that are
not caused by springs

Resulting force at point

$$\mathbf{F_i} = \mathbf{F_i^{int}} + \mathbf{F_i^{ext}}$$

Dissipative Forces

Dissipative forces

Damping Friction

$$\mathbf{F}^{damping}(t) = -\gamma \cdot \mathbf{v}(t)$$

System Equations

Equation of Motion for one mass point (3 eqs.)

$$m_i \frac{d^2 \mathbf{x}_i(t)}{dt^2} = \mathbf{F}_i^{\text{int}}(t) + \mathbf{F}_i^{\text{ext}}(t)$$

Equation of Motion for a system of mass points (3n eqs.)

$$\mathbf{M} \frac{d^2 \mathbf{X}(t)}{dt^2} = \mathbf{F}^{\text{int}}(t) + \mathbf{F}^{\text{ext}}(t)$$

M is a diagonal matrix

System Equations

Incorporation of damping

$$\mathbf{M} \frac{d^2 \mathbf{X}(t)}{dt^2} + \mathbf{D} \frac{d \mathbf{X}(t)}{dt} = \mathbf{F}^{\text{int}}(t) + \mathbf{F}^{\text{ext}}(t)$$

Overview

- Model and Physics
- Implementation Hints
- Time-Discretization
- Collision Response
- (Simulation Loop)

Elastic Spring

```
class SPRING
{
  public:
    POINT *point1;
    POINT *point2;
    float stiffness;  // k
    float initialLength; // L
    float currentLength; // 1
    . . .
}
```

Mass Point

```
class POINT
   public:
      float mass;
      float position[3];
      float velocity[3];
      float force[3];
      float damping;
```

Force Computation

Overview

- Model and Physics
- Implementation Hints
- Time-Discretization
- Collision Response
- (Simulation Loop)

System Equations

System of 3*n* 2nd order Ordinary Differential Equations (ODE)

$$\mathbf{M}\frac{d^2\mathbf{X}(t)}{dt^2} + \mathbf{D}\frac{d\mathbf{X}(t)}{dt} = \mathbf{F}^{int}(t) + \mathbf{F}^{ext}(t)$$

One 2nd order ODE (1-dimensional problem)

$$m\frac{d^2x(t)}{dt^2} + \gamma \frac{dx(t)}{dt} = F(t)$$

Initial value problem: x(0) and v(0) are known

Solution

- a) Analytical solution (if we care about the exact state at time t)
- b) **Discrete** solution
- Graphics: the goal is to **display** the state at t_i
- Find solution at discrete time instants t_i , assuming that we know previous solutions t_{i-1} , t_{i-2} , etc.
- We do not care about the steady state error, but we want plausible behavior and response to external forces

Problem

- We have:
 - Initial position x
 - Initial velocity v
 - 2nd derivative of position x with respect to time

$$\frac{d^2\mathbf{x_i}(t)}{dt^2} = \frac{\mathbf{F_i}(t) - \gamma \mathbf{v_i}(t)}{m_i}$$

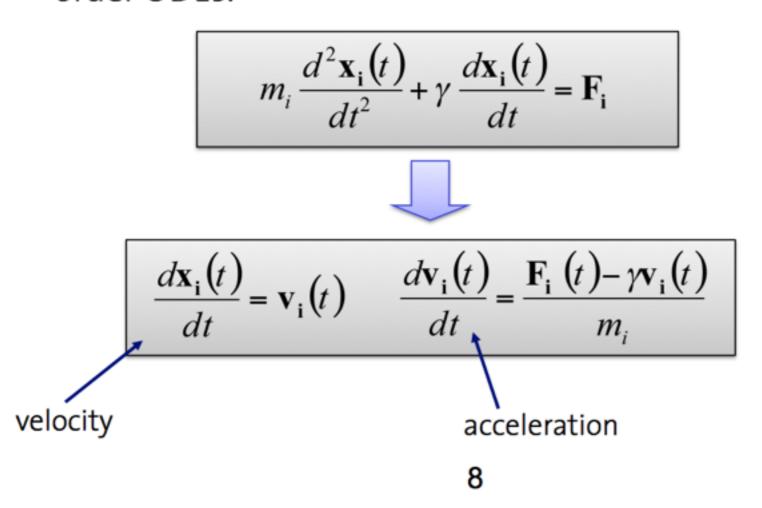
• Goal: Computation of position x over time

Numerical Integration Methods

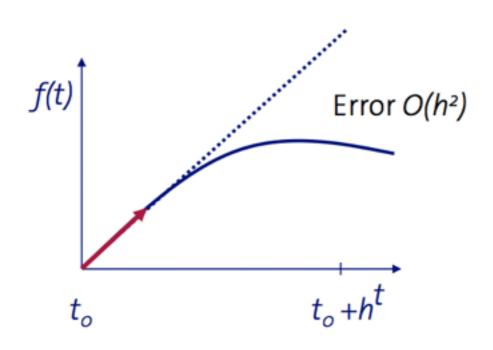
- Explicit Integration
 - Euler
 - Leapfrog
 - Heun
 - Midpoint
 - Runge-Kutta methods
- Implicit Integration
 - Backward Euler
- Predictor-Corrector methods
 - Gear
- Methods for higher order ODEs
 - Verlet
 - Beeman
- Variable time-step methods

Numerical Integration Methods

 Reduction of a second-order ODE to two coupled firstorder ODEs.



Explicit Integration



Euler Method

Leonard Euler: 1707 (Basel) – 1783 (St. Petersburg)

- Initial value f(t_o)
- Compute the derivative at t_o
- Move from t_o to t_o+h
 using the derivative at t_o

Explicit Integration

$$f(t_0 + h) = f(t_0) + h \cdot f'(t_0) + \frac{h^2}{2} f''(t_0) + \dots$$

$$f(t_0 + h) = f(t_0) + h \cdot f'(t_0) + O(h^2)$$
Taylor series

$$f(t_0 + h) = f(t_0) + h \cdot f'(t_0) + O(h^2)$$

$$f(t_0 + h) \cong f(t_0) + h \cdot f'(t_0)$$

Euler method

Explicit Integration

$$\mathbf{x}'(t) = \mathbf{v}(t)$$
 $\mathbf{v}'(t) = \frac{\mathbf{F}(t) - \gamma \mathbf{v}(t)}{m}$

Start with initial values
$$\mathbf{x}(t_0) = \mathbf{x}_0 \quad \mathbf{v}(t_0) = \mathbf{v}_0$$
Compute
$$\mathbf{v}'(t_0) \quad \mathbf{x}'(t_0)$$
Assume
$$\mathbf{v}'(t) = \mathbf{v}'(t_0) \quad \mathbf{x}'(t) = \mathbf{x}'(t_0) \quad t_0 \le t \le t_0 + h$$
Compute
$$\mathbf{x}(t_0 + h) = \mathbf{x}(t_0) + h\mathbf{x}'(t_0) = \mathbf{x}(t_0) + h\mathbf{v}(t_0)$$
Compute
$$\mathbf{v}(t_0 + h) = \mathbf{v}(t_0) + h\mathbf{v}'(t_0) = \mathbf{v}(t_0) + h\frac{\mathbf{F}(t_0) - \gamma \mathbf{v}(t_0)}{m}$$

F(t) is computed from x(t) and external forces!

Error Accumulation

$$\mathbf{x}'(t) = \mathbf{v}(t)$$
 $\mathbf{v}'(t) = \frac{\mathbf{F}(t) - \gamma \mathbf{v}(t)}{m}$

Euler step from t_0 to t_0+h $\mathbf{x}(t_0+h)=\mathbf{x}(t_0)+h\mathbf{v}(t_0) \qquad \mathbf{v}(t_0+h)=\mathbf{v}(t_0)+h\frac{\mathbf{F}(t_0)-\gamma\mathbf{v}(t_0)}{m}$ $\mathbf{x}(t_0+2h)=\mathbf{x}(t_0+h)+h\mathbf{v}(t_0+h)$

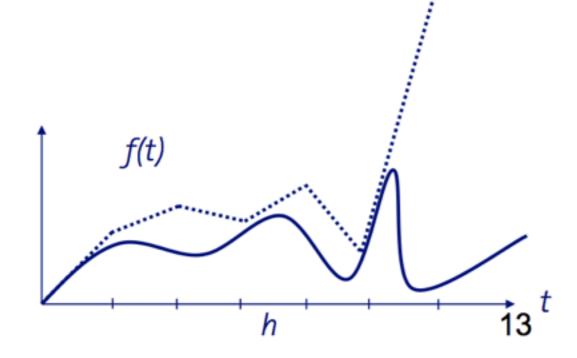
Euler step
$$\mathbf{v}(t_0 + 2h) = \mathbf{v}(t_0 + h) + h \frac{\mathbf{F}(t_0 + h) - \gamma \mathbf{v}(t_0 + h)}{m}$$

Problems

Numerical integration is inaccurate.

$$f(t+h) = f(t) + f'(t)h + O(h^2)$$
Euler step Error

Inaccuracy can cause instability.



Error

$$0 \le e < \frac{h^2}{2} \cdot f''(t_e), \quad t_e \in [t, t+h]$$

Improving Accuracy - Leap Frog

$$\mathbf{v}(t+h/2) = \mathbf{v}(t-h/2) + h \cdot \mathbf{a}(t)$$
$$\mathbf{x}(t+h) = \mathbf{x}(t) + h \cdot \mathbf{v}(t+h/2)$$

Error *O(h³)*time step *h is* significantly larger compared to Euler

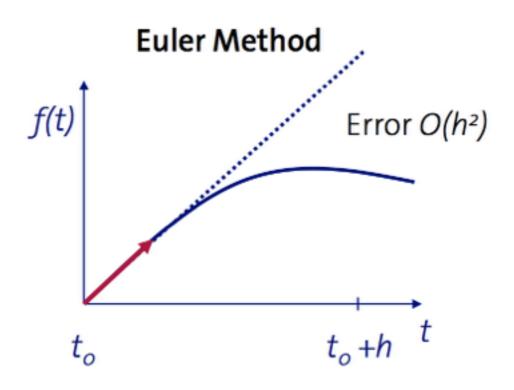
Implementation

Euler	Leapfrog
addForces(); // F(t) positionEuler(h); // x=x(t+h)=x(t)+hv(t) velocityEuler(h); // v=v(t+h)=v(t)+ha(t)	initV() // v(o) = v(o) – h/2a(o) addForces(h); // F(t) velocityEuler(h); // v=v(t+h)=v(t)+ha(t) positionEuler(h); // x=x(t+h)=x(t)+hv(t+h)

(In practice, it is irrelevant that velocities are computed at mid time steps)

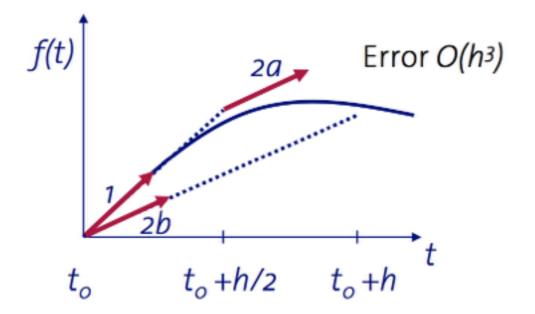
Improving Accuracy - Runge Kutta

2nd order (midpoint method)



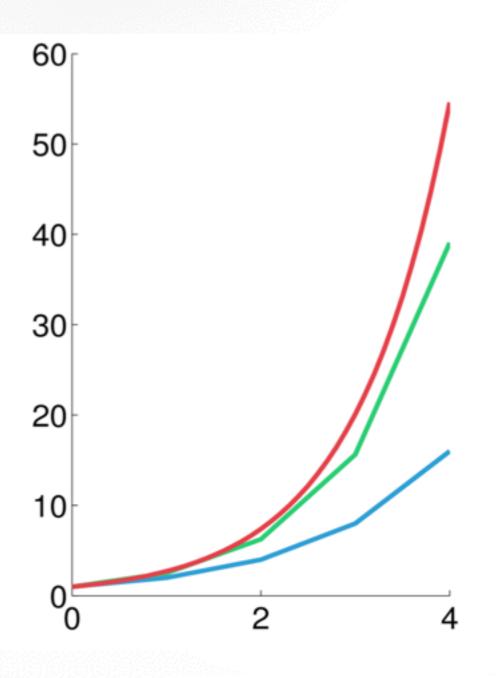
- Compute the derivative at t_o
- Move from t_o to t_o +h using the derivative at t_o

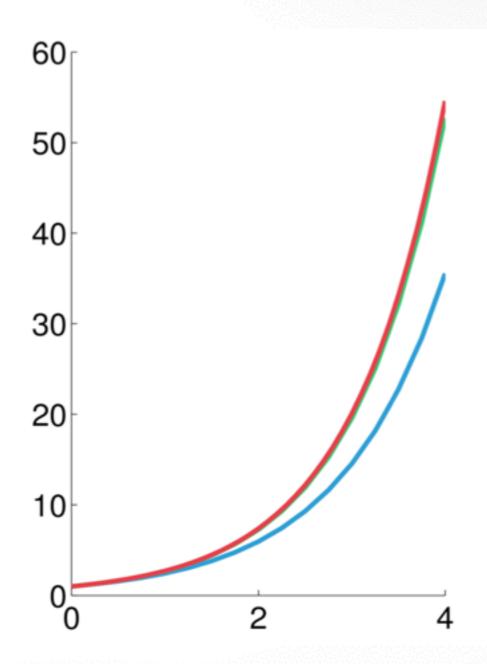
Runge-Kutta Methods



- Compute the derivative at t_o
- Move to $t_o + h/2$
- Compute the derivative at $t_o + h/2$
- Move from t_o to $t_o + h$ using the derivative at $t_o + h/2$
- Second order R-K also called "midpoint"

Midpoint vs Euler





- •Green = Midpoint
- •Blue = Euler
- •h=1 vs. h=1/4

Implementation

Euler Method

Straightforward:

- Compute spring forces
- Add external forces
- Update positions
- Update velocities

Runge-Kutta Methods

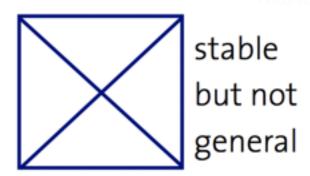
- Compute spring forces
- Add external forces
- Compute auxiliary positions and velocities
 - once for second-order
 - three times for fourth-order
 - requires additional data copies
- Update positions
- Update velocities

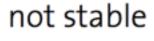
Avoiding Instability

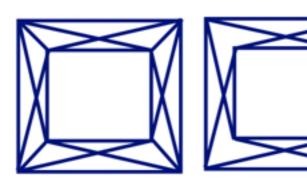
- No general solution to avoid instability for complex mass-point systems.
- A smaller time step increases the chance for stability.
- A larger time step speeds up the simulation.
- Parameters and topology of the mass-point system, and external forces influence the stability of a system.
- Increasing damping does not always help.

Topology and Stability

 Stable model topologies with respect to deformation



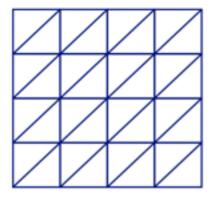




stable

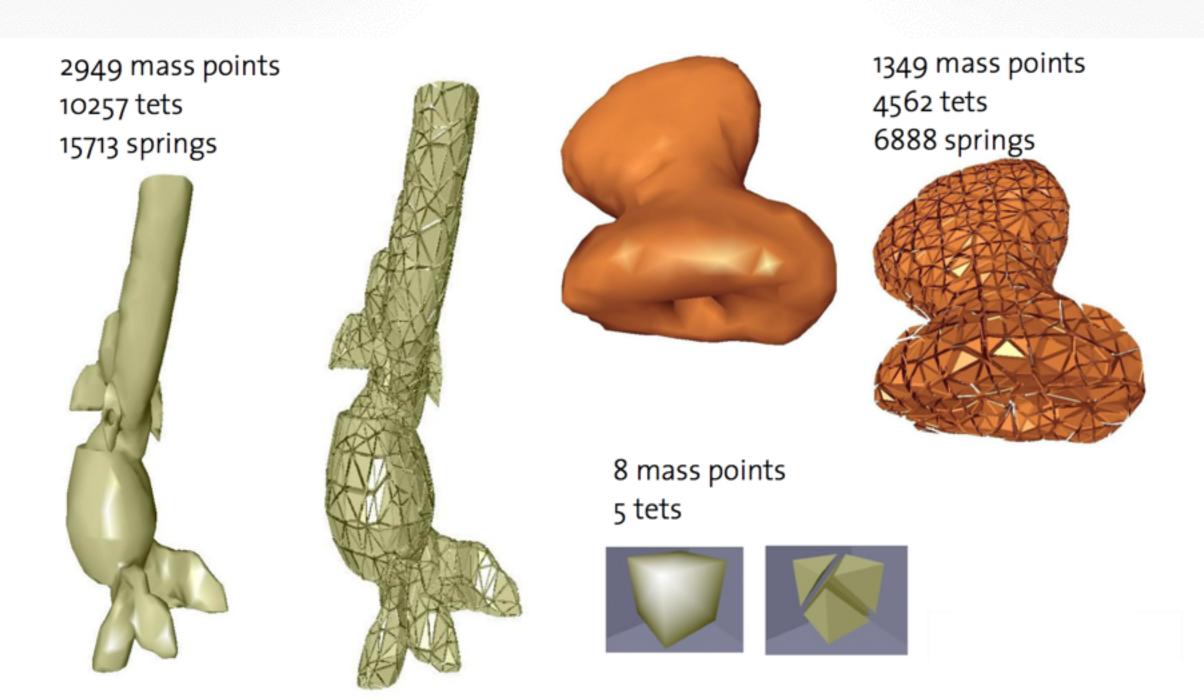
can be generated automatically by copying the surface to an inner layer and connecting both – **layered model** in the extreme case, consider the inner layer to be just a point

Design problem



much more resistant in
direction than in
direction.

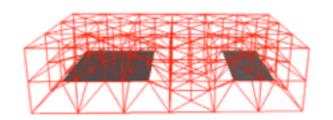
Volumetric Models - Tet Meshes

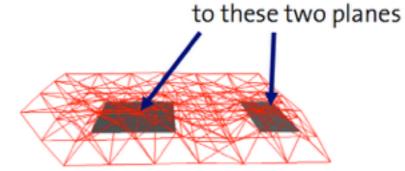


Topology Ambiguity Problem

Unappropriate topology without diagonal springs

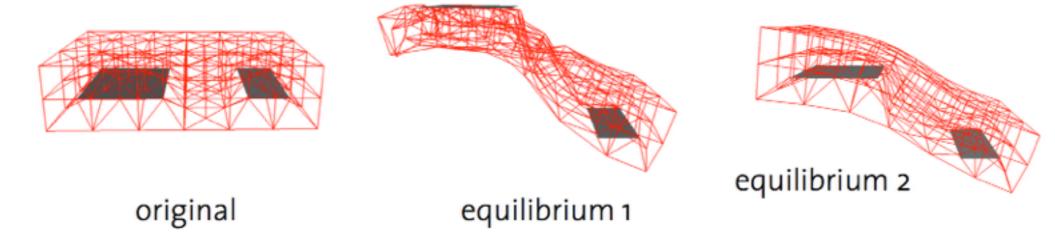
No force penalty for shearing





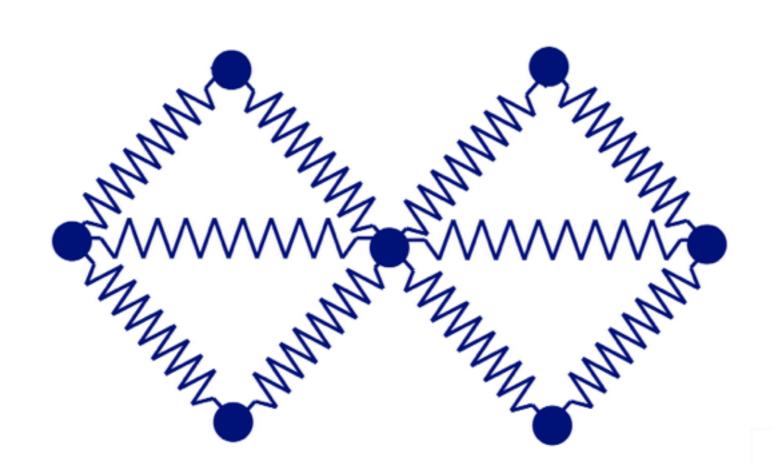
model is attached

- Appropriate topology with diagonal springs
- · However, self-collision problem, springs have no notion of volume



Cloth Forces

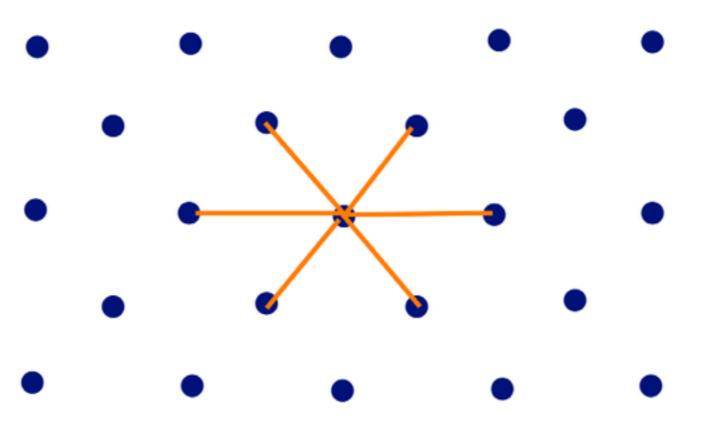
- Types of forces in cloth: stretch, bending, shear
- Bending cannot be modeled with a simple network of springs



Cloth Springs

• Combine level-1 and level-2 springs

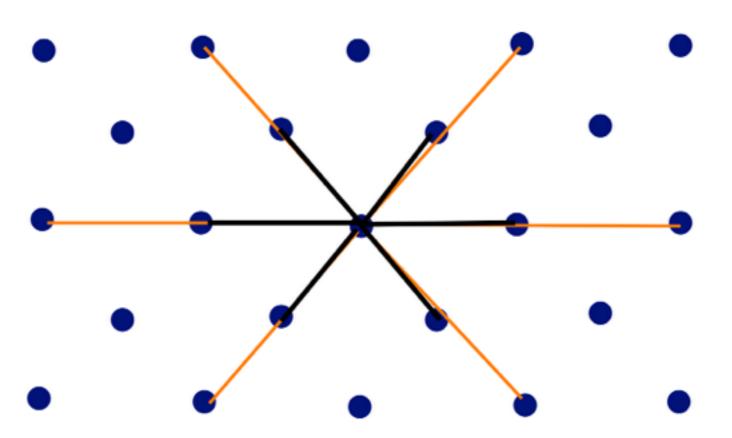
Level 1 for stretch



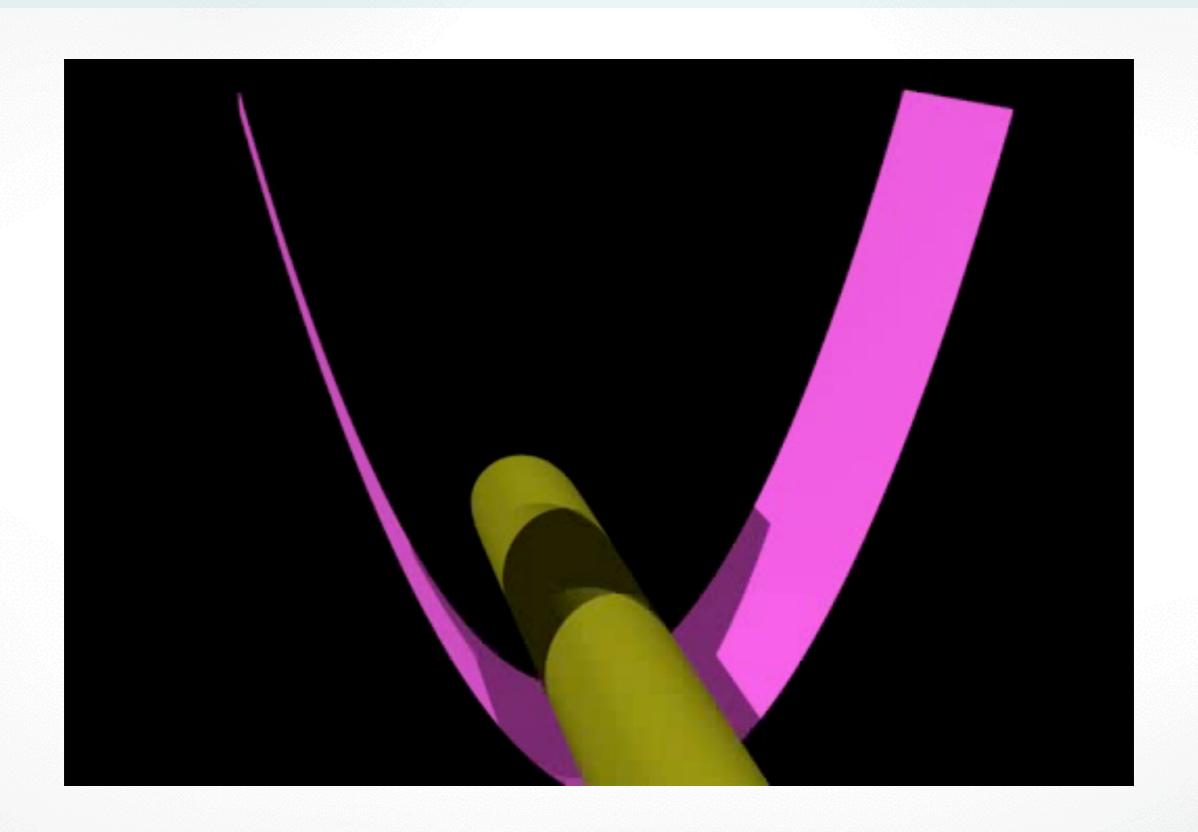
Cloth Springs

Combine level-1 and level-2 springs

Level 2 for bending



Cloth Springs



http://cs420.hao-li.com

Thanks!

