CSCI 420: Computer Graphics

8.1 Geometric Queries for Ray Tracing

Chongyang Ma

http://cs420.hao-li.com

Outline

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric coordinates

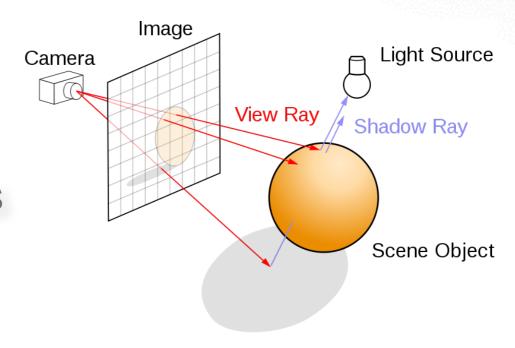
Outline

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric coordinates

Ray-Surface Intersections

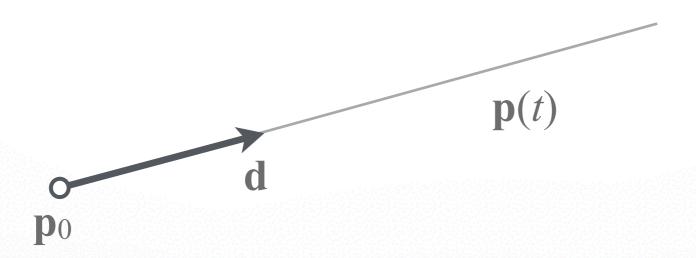
- Necessary in ray tracing
- General parametric surfaces
- General implicit surfaces

- Spheres
- Planes
- Polygons
- Quadrics



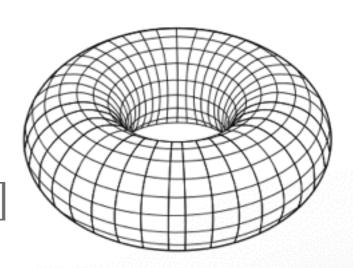
Generating Rays

- Ray in parametric form
 - Origin $\mathbf{p}_0 = [x_0 \ y_0 \ z_0]^T$
 - Direction $\mathbf{d} = [x_d \ y_d \ z_d]^T$
 - Assume **d** is normalized: $x_d \cdot x_d + y_d \cdot y_d + z_d \cdot z_d = 1$
 - Ray $\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{d}t$ for t > 0



Intersection of Rays and Parametric Surfaces

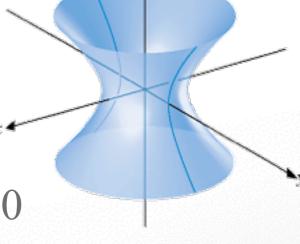
- Ray in parametric form
 - Origin $\mathbf{p}_0 = [x_0 \ y_0 \ z_0]^T$
 - Direction $\mathbf{d} = [x_d \ y_d \ z_d]^T$
 - Assume **d** is normalized: $x_d \cdot x_d + y_d \cdot y_d + z_d \cdot z_d = 1$
 - Ray $\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{d}t$ for t > 0
- Surface in parametric form
 - Points $\mathbf{q} = \mathbf{g}(u, v) = [x(u, v), y(u, v), z(u, v)]$
 - Solve $\mathbf{p}_0 + \mathbf{d}t = \mathbf{g}(u, v)$
 - Three equations in three unknowns (t, u, v)
 - Possible bounds on u, v



Intersection of Rays and Implicit Surfaces

- Ray in parametric form
 - Origin $\mathbf{p}_0 = [x_0 \ y_0 \ z_0]^T$
 - Direction $\mathbf{d} = [x_d \ y_d \ z_d]^T$
 - Assume **d** is normalized: $x_d \cdot x_d + y_d \cdot y_d + z_d \cdot z_d = 1$
 - Ray $\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{d}t$ for t > 0

- All points \mathbf{q} such that $f(\mathbf{q}) = 0$
- Substitute ray equation for **q**: $f(\mathbf{p}_0 + \mathbf{d}t) = 0$
- Solve for t (univariate root finding)
- Closed form if possible, otherwise approximation

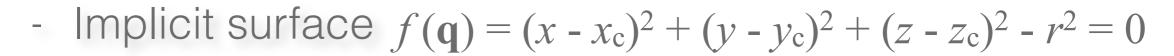


Outline

- Ray-Surface Intersections
- · Special cases: sphere, polygon
- Barycentric coordinates

Ray-Sphere Intersection I

- Define sphere by
 - Center $\mathbf{c} = [x_c \ y_c \ z_c]^T$
 - Radius r



Plug in ray equations for x, y, z

$$x = x_0 + x_d t$$
, $y = y_0 + y_d t$, $z = z_0 + z_d t$

Obtain a scalar equation for t

$$(x_0 + x_d t - x_c)^2 + (y_0 + y_d t - y_c)^2 + (z_0 + z_d t - z_c)^2 - r^2 = 0$$

Ray-Sphere Intersection II

• Simplify to $at^2 + bt + c = 0$

where
$$a = x_d^2 + y_d^2 + z_d^2 = 1$$
 since $|d| = 1$
 $b = 2(x_d(x_0 - x_c) + y_d(y_0 - y_c) + z_d(z_0 - z_c))$
 $c = (x_0 - x_c)^2 + (y_0 - y_c)^2 + (z_0 - z_c)^2 - r^2$

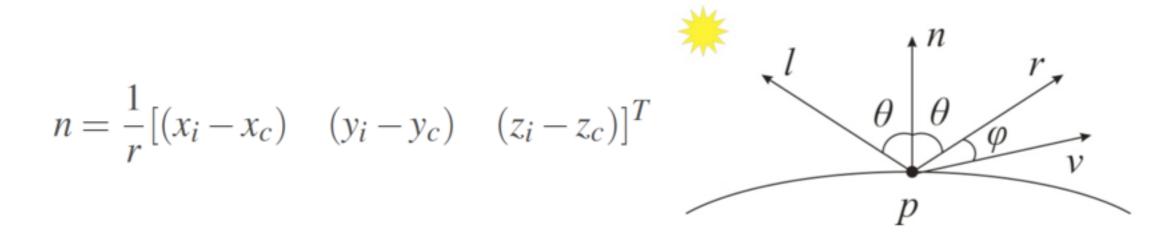
• Solve to obtain t_0, t_1

$$t_{0,1} = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

• Check if $t_0, t_1 > 0$. Return $min(t_0, t_1)$

Ray-Sphere Intersection III

• For shading (e.g., Phong model), calculate unit normal



Negate if ray originates inside the sphere!

Note possible problems with roundoff errors

Simple Optimizations

Factor common subexpressions

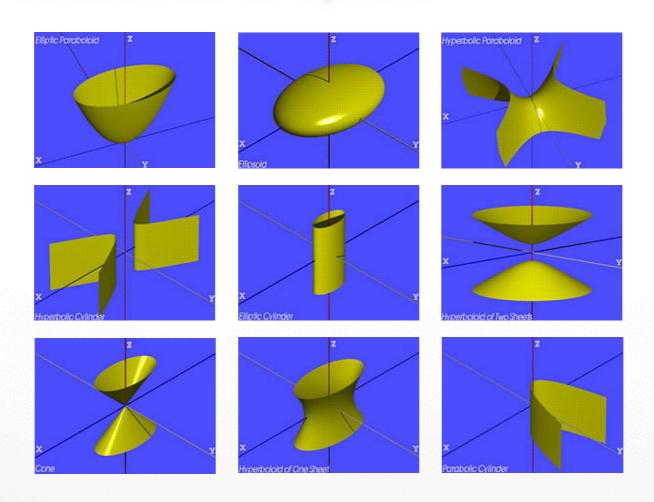
$$b = 2(x_d(x_0 - x_c) + y_d(y_0 - y_c) + z_d(z_0 - z_c))$$

$$c = (x_0 - x_c)^2 + (y_0 - y_c)^2 + (z_0 - z_c)^2 - r^2$$

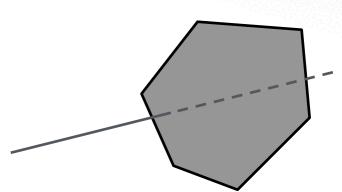
- Compute only what is necessary
 - Calculate $b^2 4c$, abort if negative
 - Compute normal only for closest intersection
 - Other similar optimizations

Ray-Quadric Intersection

- Quadric $f(\mathbf{p}) = f(x, y, z) = 0$, where f is polynomial of order 2
 - Sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder
- Closed form solution as for sphere



Ray-Polygon Intersection I



- 1. Intersect ray with plane containing polygon
- 2. Check if intersection point is inside polygon

Plane

- Implicit form: $a \cdot x + b \cdot y + c \cdot z + d = 0$

- Unit normal: $\mathbf{n} = [a \ b \ c]^{T}$ with $a^{2} + b^{2} + c^{2} = 1$

Ray-Polygon Intersection II

Substitute t to obtain intersection point in plane

$$a(x_0 + x_d t) + b(y_0 + y_d t) + c(z_0 + z_d t) + d = 0$$

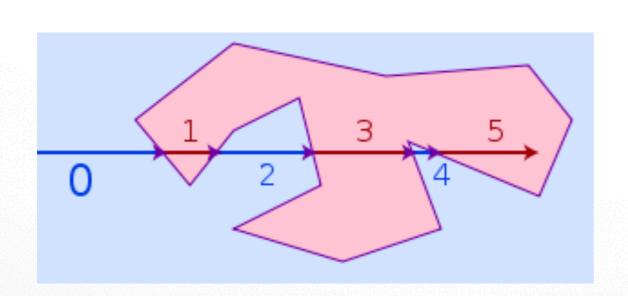
Solve and rewrite using dot product

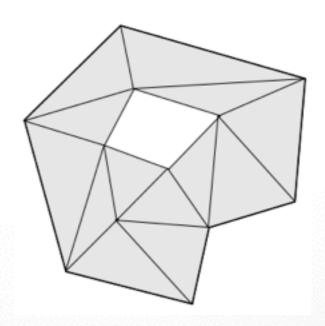
$$t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d} = \frac{-(n \cdot p_0 + d)}{n \cdot d}$$

- If $n \cdot d = 0$, no intersection (ray parallel to plane)
- If $t \le 0$, the intersection is behind ray origin

Test if point inside polygon

- Use even-odd rule or winding rule
- Easier if polygon is in 2D (project from 3D to 2D)
- Easier for triangles (tessellate polygons)





Test if point inside triangle

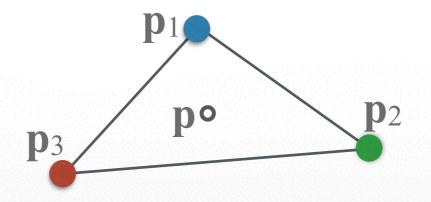
- 1. Project the point and triangle onto a plane
 - Pick a plane not perpendicular to triangle (such a choice always exists)
 - x = 0, y = 0, or z = 0
- 2. Then, do the 2D test in the plane, by computing barycentric coordinates (follows next)

Outline

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric coordinates

Interpolated Shading for Ray Tracing

- Assume we know normals at vertices
- How do we compute normal of interior point?
- Need linear interpolation between 3 points
- Barycentric coordinates



Barycentric Coordinates in 1D

Linear interpolation

$$\mathbf{p}(t) = (1 - t) \mathbf{p}_1 + t \mathbf{p}_2, \ 0 \le t \le 1$$

$$\mathbf{p} = \alpha \mathbf{p}_1 + \beta \mathbf{p}_2, \ \alpha + \beta = 1$$

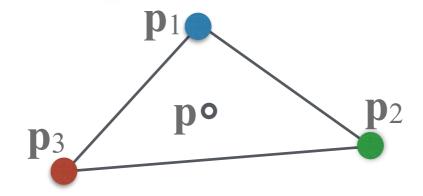
$$\mathbf{p} \text{ is between } \mathbf{p}_1 \text{ and } \mathbf{p}_2 \text{ iff } 0 \le \alpha, \beta \le 1$$

- Geometric intuition
 - Weigh each vertex by ratio of distances from ends

• α , β are called barycentric coordinates

Barycentric Coordinates in 2D

Now we have 3 points instead of 2



- Define 3 barycentric coordinates α , β , γ
- $\mathbf{p} = \alpha \, \mathbf{p}_1 + \beta \, \mathbf{p}_2 + \gamma \, \mathbf{p}_3$
- **p** inside triangle iff $0 \le \alpha$, β , $\gamma \le 1$, $\alpha + \beta + \gamma = 1$
- How do we calculate α , β , γ ?

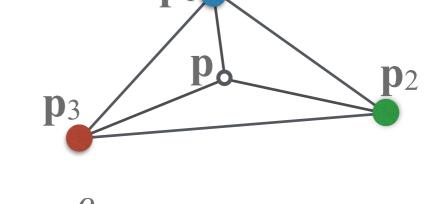
Barycentric Coordinates for Triangle

Coordinates are ratios of triangle areas

$$\alpha = \text{Area}(\mathbf{pp_2p_3}) / \text{Area}(\mathbf{p_1p_2p_3})$$

$$\beta = \text{Area}(\mathbf{p_1pp_3}) / \text{Area}(\mathbf{p_1p_2p_3})$$

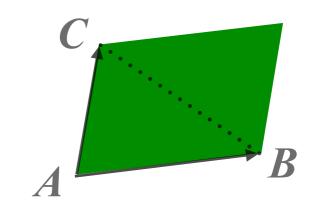
$$\gamma = \text{Area}(\mathbf{p_1p_2p}) / \text{Area}(\mathbf{p_1p_2p_3}) = 1 - \alpha - \beta$$



- Areas in these formulas should be signed
 - Clockwise (-) or anti-clockwise (+) orientation of the triangle
 - Important for point-in-triangle test

Compute Triangle Area in 3D

- Use cross product
- Parallelogram formula



- Area $(ABC) = (1/2) |(B A) \times (C A)|$
- How to get correct sign for barycentric coordinates?
 - Compare directions of cross product $(\mathbf{B} \mathbf{A}) \times (\mathbf{C} \mathbf{A})$ for triangles $\mathbf{pp_2p_3}$ vs $\mathbf{p_1p_2p_3}$, etc. (either 0 (sign+) or 180 deg (sign-) angle)
 - Easier alternative: project to 2D, use 2D formula (projection to 2D preserves barycentric coordinates)

Compute Triangle Area in 2D

- Suppose we project the triangle ABC to x-y plane
- Area of the projected triangle in 2D with the correct sign:

$$(1/2)((b_x - a_x)(c_y - a_y) - (c_x - a_x)(b_y - a_y))$$

Outline

- Ray-Surface Intersections
- Special cases: sphere, polygon
- Barycentric coordinates

http://cs420.hao-li.com

Thanks!

