
CSCI 420: Computer Graphics

Hao Li
http://cs420.hao-li.com

Fall 2014

6.2 Bump Mapping !

& Clipping

1

http://cs420.hao-li.com

Bump Mapping

2

A long time ago, in 1978

3

courtesy by ZBrush

… bump mapping was born

4

vertex normal interpolation

smooth shading

What about!
accessing textures to modify surface normals...

For Meshes

5

Use bump map normals given a parametrized mesh

u =
�

u
v

⇥
� R2

Goal

6

Bump map normals!
are defined in a local coordinate frame!

inside a triangle

7

We have positions, normals and parameters !
of the triangle corners

8

9

How do we obtain coordinate frame?

p(u) � R3

u =
�

u
v

⇥
� R2

2-Manifold Surface

Parameter Domain

Some Differential Geometry

10

p(u) � R3

u =
�

u
v

⇥
� R2

Surface

Parameter Domain

n(p)

11

Surface normals for shading

p(u) � R3

n(p)

�p
�u

�p
�v

12

Surface normals obtained from tangent space

p1

p2

p3

p0

pi = p0 + ui
�p
�u

+ vi
�p
�vp

13

Tangent vectors inside triangles

we are not interested in p0

p2 � p1 = (u2 � u1)
�p
�u

+ (v2 � v1)
�p
�v

p3 � p1 = (u3 � u1)
�p
�u

+ (v3 � v1)
�p
�v

14

Fully determined from positions and parameters

�
p2 � p1 p3 � p1

⇥
=

⇧
�p
�u

�p
�v

⌃ ⇤
(u2 � u1) (u3 � u1)
(v2 � v1) (v3 � v1)

⌅

p2 � p1 = (u2 � u1)
�p
�u

+ (v2 � v1)
�p
�v

p3 � p1 = (u3 � u1)
�p
�u

+ (v3 � v1)
�p
�v

correct if mesh is planar

2x2 Matrix Inversion

15

n
n1

n2

n3

n = �1n1 + �2n2 + �3n3 p = �1p1 + �2p2 + �3p3from

Normals Interpolation (see Phong Shading)

16

n

�p
�u

�p
�v

�pnew
�v

�pnew
�u

Tangent vectors orthogonal to normal

17

We now have an inexpensive way to add !
geometric details

Other bump mapping techniques exist

18

• “Simulation of Wrinkled Surfaces” [Blinn 1978]

• “Real-Time Rendering” [Akenine-Möller and Haines 2002] p.166 – 177

Further Readings

19

Clipping

20

The Graphics Pipeline, Revisited

!

!

• Must eliminate objects that are outside  
of viewing frustum

• Clipping: object space (eye coordinates)

• Scissoring: image space (pixels in frame buffer)
 - most often less efficient than clipping

• We will first discuss 2D clipping (for simplicity)
 - OpenGL uses 3D clipping

21

2D Clipping Problem

22

• General case of frustum (truncated pyramid)
!

!

!

!

!

!

!

!

!

• Clipping is tricky because of frustum shape

Clipping Against a Frustum

23

x

y

image plane

near far

Z

clipped line

Perspective Normalization

• Solution:
 - Implement perspective projection by perspective
 normalization and orthographic projection
 - Perspective normalization is a homogeneous transformation

24

near far

z

clipped line

image plane

x
y

near

clipped line

z

y

x

0

1
1

1

far

The Normalized Frustum

• OpenGL uses -1 ≤ x,y,z ≤ 1 (others possible)

• Clip against resulting cube

• Clipping against arbitrary (programmer-specified) planes
 requires more general algorithms and is more expensive

25

The Viewport Transformation

• Transformation sequence again:
1. Camera: From object coordinates to eye coords
2. Perspective normalization: to clip coordinates
3. Clipping
4. Perspective division: to normalized device coords
5. Orthographic projection (setting zp = 0)
6. Viewport transformation: to screen coordinates

• Viewport transformation can distort
 - Solution: pass the correct window aspect ratio to
 gluPerspective

26

Clipping

• General: 3D object against cube  

• Simpler case:
 - In 2D: line against
 square or rectangle
 - Later: polygon clipping

27

1

y

x

z0 1

1

clipped line

Clipping Against Rectangle in 2D

• Line-segment clipping: modify endpoints of lines to lie
 within clipping rectangle

28

Clipping Against Rectangle in 2D

• The result (in red)

29

Clipping Against Rectangle in 2D

• Could calculate intersections of line segments with
 clipping rectangle
 - expensive, due to floating point multiplications  
 and divisions

• Want to minimize the number of multiplications 
and divisions

30

y = y1

y = y0

y = kx+ n

x = x0 x = x1

Several practical algorithms for clipping

• Main motivation:  
Avoid expensive line-rectangle intersections 
(which require floating point divisions)

• Cohen-Sutherland Clipping

• Liang-Barsky Clipping

• There are many more  
(but many only work in 2D)

31

Cohen-Sutherland Clipping

32

• Clipping rectangle is an intersection of 4 half-planes

!

!

!

• Encode results of four half-plane tests

• Generalizes to 3 dimensions (6 half-planes)

y < ymax y > ymin

x > xmin x < xmax

= ∩
interior

xmin xmax

ymin

ymax

interior

Outcodes (Cohen-Sutherland)

• Divide space into 9 regions

• 4-bit outcode determined by comparisons (TBRL)

33

b0 : y > y
max

b1 : y < y
min

b2 : x > x
max

b3 : x < x
min

O1 = outcode(x1, y1)

O1 = outcode(x2, y2)

1001 1000 1010

001000000001

0101 0100 0110

ymax

ymin
(x1, y1) (x2, y2)

xmin xmax

Cases for Outcodes

• Outcomes: accept, reject, subdivide

34

1001 1000 1010

001000000001

0101 0100 0110

ymax

ymin

xmin xmax

O1 = O2 = 0000: accept entire

 segment

O1 & O2 ≠ 0000: reject entire

 segment

O1 = 0000, O2 ≠ 0000: subdivide

O1 ≠ 0000, O2 = 0000: subdivide

O1 & O2 = 0000: subdivide

bitwise AND

Cohen-Sutherland Subdivision

• Pick outside endpoint (o ≠ 0000)

• Pick a crossed edge (o = b0b1b2b3 and bk ≠ 0)

• Compute intersection of this line and this edge

• Replace endpoint with intersection point

• Restart with new line segment
 - Outcodes of second point are unchanged

• This algorithms converges

35

Liang-Barsky Clipping

• Start with parametric form for a line

36

p1

p2

Liang-Barsky Clipping

• Compute all four intersections 1,2,3,4 with extended
 clipping rectangle

• Often, no need to compute all four intersections

37

p1

p2

1

2

3 4
extended clipping rectangle

Ordering of intersection points

!

!

!

!

!

• Order the intersection points

• Figure (a): 1 > α4 > α3 > α2 > α1 > 0

• Figure (b): 1 > α4 > α2 > α3 > α1 > 0
38

Liang-Barsky Idea

!

!

!

!

!

• It is possible to clip already if one knows 
the order of the four intersection points !

• Even if the actual intersections were not computed !

• Can enumerate all ordering cases
39

Liang-Barsky efficiency improvements

40

• Efficiency improvement 1:
 - Compute intersections one by one
 - Often can reject before all four are computed

• Efficiency improvement 2:
 - Equations for α3, α2

!

!

!

 - Compare α3, α2 without floating-point division

Line-Segment Clipping Assessment

• Cohen-Sutherland
 - Works well if many lines can be rejected early
 - Recursive structure (multiple subdivisions) is a drawback

• Liang-Barsky
 - Avoids recursive calls
 - Many cases to consider (tedious, but not expensive)
 - In general much faster than Cohen-Sutherland

41

Outline

• Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky

• Polygon Clipping
 - Sutherland-Hodgeman

• Clipping in Three Dimensions

42

Polygon Clipping

• Convert a polygon into one or more polygons

• Their union is intersection with clip window

• Alternatively, we can first tesselate concave polygons
 (OpenGL supported)

43

Concave Polygons

44

• Approach 1: clip, and then join pieces to a single polygon
 - often difficult to manage

!

!

• Approach 2: tesselate and clip triangles
 - this is the common solution

Sutherland-Hodgeman (part 1)

• Subproblem:
 - Input: polygon (vertex list) and single clip plane
 - Output: new (clipped) polygon (vertex list)

• Apply once for each clip plane
 - 4 in two dimensions
 - 6 in three dimensions
 - Can arrange in pipeline

45

Sutherland-Hodgeman (part 2)

• To clip vertex list (polygon) against a half-plane:
 - Test first vertex. Output if inside, otherwise skip.
 - Then loop through list, testing transitions

‣ In-to-in: output vertex
‣ In-to-out: output intersection
‣ out-to-in: output intersection and vertex
‣ out-to-out: no output

 - Will output clipped polygon as vertex list

• May need some cleanup in concave case

• Can combine with Liang-Barsky idea
46

Other Cases and Optimizations

• Curves and surfaces
 - Do it analytically if possible
 - Otherwise, approximate curves / surfaces by
 lines and polygons
• Bounding boxes
 - Easy to calculate and maintain
 - Sometimes big savings

47

Outline

• Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky

• Polygon Clipping
 - Sutherland-Hodgeman

• Clipping in Three Dimensions

48

Clipping Against Cube

• Derived from earlier algorithms

• Can allow right parallelepiped

49

Cohen-Sutherland in 3D

• Use 6 bits in outcode
 - b4: z > zmax
 - b5: z < zmin

• Other calculations
 as before

50

Liang-Barsky in 3D

51

• Add equation

• Solve, for p0 in plane and normal n:

!

!

• Yields

!

!

• Optimizations as for Liang-Barsky in 2D

z(↵) = (1� ↵)z1 + ↵z2

Summary: Clipping

• Clipping line segments to rectangle or cube
 - Avoid expensive multiplications and divisions
 - Cohen-Sutherland or Liang-Barsky

• Polygon clipping
 - Sutherland-Hodgeman pipeline

• Clipping in 3D
 - essentially extensions of 2D algorithms

52

Next Time

• Scan conversion

• Anti-aliasing

• Other pixel-level operations

53

http://cs420.hao-li.com

Thanks!

54

http://cs420.hao-li.com

