
CSCI 420: Computer Graphics

Hao Li
http://cs420.hao-li.com

1

Fall 2014

1.2 Basic Graphics Programming

Last time

Computer!
Graphics ImageStory

Last Time

Last Time

4

3D Capture

Modeling!
Design

Animation

Simulation

3D Printing

3D Rendering

Sound
Rendering

emerging fields

Last Time

5

realistic

effective

Last Time

6

From Offline to Realtime
From Graphics to Vision

From Graphics to Fabrication

From Production to Consumers

Render [ren-der]

7

To generate an image or animation

input data output rendering

How to make an image?

8

drawing

photography

Output: Raster Image

• 2D array of pixels (picture elements)
• regular grid sampling of arbitrary 2D function
• different formats, e.g., bitmaps, grayscale, color
• different data types, e.g., boolean, int, float
• color/bit depth: #bits/pixel
• transparency handled by alpha channel, e.g., RGBA

Rasterization

Rasterization

Okay… let’s take a step back

12

In the physical world

13

Light Transport

14

• Light travels in straight lines!

• Light rays do not interfere with each other if
they cross

• Light travels from the light sources to the eye
(physics is invariant under path reversal
reciprocity)

Light-Oriented (Forward Raytracing)

15

Only a fraction of light rays reach the image

Eye-Oriented (Backward Raytracing)

16

or simply “Raytracing”

Object-Oriented (Forward Rendering)

17

Scene is composed of geometric structures with the buiding block of a
triangle. Each triangle is projected, colored, and painted on the screen

vector
raster rasterization

Light vs. Eye vs. Object-Oriented Rendering

• Light-oriented (Forward Raytracing)!
• light sources send off photons in all directions and hits

camera

• Eye-oriented (Backward Raytracing or simply Raytracing)
• walk through each pixel looking for what object (if any)

should be shown there

• Object-oriented (OpenGL):
• walk through objects, transforming and then drawing each

one unless the z-buffer says that it’s not in front

Let’s leave rasterization to the GPU

19

OpenGL

20

Industry Standard API for !
Computer Graphics

Alternatives

21

interactive, but not cross-platform

OpenGL Family

22

What is OpenGL?

• Low-level graphics library (API) for 2D and 3D interactive
Graphics.

• Descendent of GL (from SGI)

• First version in 1992; now: 4.2 (2012)

• Managed by Khronos Group (non-profit consortium)

• API is governed by Architecture Review Board (part of
Khronos)

!

23

Where is OpenGL used?

24

• CAD!

• VR!

• Scientific Visualization!

• Simulators!

• Video games!

!

Realtime Graphics Demo

25

Graphics Library (API)

• Interface between Application and Graphics Hardware

!

!

!

• Other popular APIs:

!

26

• Direct3D (Microsoft) ⇾ XBox
• OpenGL ES (embedded Devices)
• X3D (successor of VRML)

OpenGL is cross-platform

• Same code works with little/no modifications

• Implementations:!

Mac, Linux, Windows: ships with the OS
Linux: Mesa, freeware implementation

How does OpenGL work

From the programmer’s point of view:!
• Specify geometric objects
• Describe object properties

• Color
• How objects reflect light

How does OpenGL work (continued)

Define how objects should be viewed!
• where is the camera?
• what type of camera?

Specify light sources!
• where, what kind?

Move camera or objects !
around for animation

The result

30

the resultthe scene

OpenGL is a state machine

31

State variables: color, camera position, light
position, material properties…

These variables (the state) then apply to every
subsequent drawing command.

They persist until set to new values by the
programmer.

OpenGL Library Organization

32

• GL (Graphics Library): core graphics capabilities

• GLU (OpenGL Utility Library): utilities on top of GL

• GLUT (OpenGL Utility Toolkit): input and windowing wrapper

OpenGL Graphics Pipeline

33

primitives+!
material!

properties

translate!
rotate!
scale

is it visible!
on screen? 3D to 2D convert to!

pixels

shown!
on the screen!
(framebuffer)

OpenGL uses immediate-mode rendering

Application generates stream of geometric
primitives (polygons, lines)

System draws each one into the frame buffer

Compare to: offline rendering (e.g., Pixar
Renderman, ray tracers…)

Entire scene is redrawn for every frame

OpenGL Graphics Pipeline

35

primitives+!
material!

properties

translate!
rotate!
scale

is it visible!
on screen? 3D to 2D convert to!

pixels

shown!
on the screen!
(framebuffer)

implemented by OpenGL, graphics driver,
graphics hardware

OpenGL programmer does not need to
implement the pipeline, but can reconfigure it
through shaders

36

OpenGL Graphics Pipeline

• Efficiently implementable in hardware (but not in software)

• Each stage can employ multiple specialized processors,
working in parallel, busses between stages

• #processors per stage, bus bandwidths are fully tuned for
typical graphics use

• Latency vs throughput

37

Vertices

• Vertices in world coordinates!

• void glVertex3f(GLfloat x, GLfloat y, GLfloat z)!
• Vertex(x,y,z) is sent down the pipeline.
• Function call then returns

• Use GLtype (e.g., GLfloat) for portability and consistency

• glVertex{234}{sfid}(TYPE coords)

38

Transformer

• Transformer in world coordinates!

• Must be set before object is drawn!!
• glRotate (45.0, 0.0, 0.0, -1.0);
• glVertex2f(1.0, 0.0);

• Complex [Angel Ch. 4]

39

Clipper

• Mostly automatic (must set viewport)

40

Projector

• Complex transformation [Angel Ch. 5]

orthographic perspective

41

Rasterizer

• Interesting algorithms [Angel Ch. 7]

• To window coordinates!

• Antialiasing

42

Primitives

• Specified via vertices

• General scheme
 glBegin(type):
 glVertex3f(x1,y1,z1);
 …
 glVertex3f(xN,yN,zN);
 glEnd();

• type determines interpretation of vertices

• Can use glVertex2f(x,y) in 2D

43

Example: Draw Square Outline

• Type = GL_LINE_LOOP!

 glBegin(GL_LINE_LOOP);
 glVertex3f(0.0,0.0,0.0);
 glVertex3f(1.0,0.0,0.0) ;
 glVertex3f(1.0,1.0,0.0);
 glVertex3f(0.0,1.0,0.0);
 glEnd()

• Calls to other functions are allowed betwen glBegin(Type)
and glEnd()

44

Points and Line Segments

 glBegin(GL_POINTS);
 glVertex3f(…);
 …
 glVertex3f(…);
 glEnd()

draw points

45

Polygons

• Polygons enclose an area!

!

!

!

!

!

• Rendering of area (fill) depends on attributes

• All vertices must be in one plane in 3D

46

Polygons Restrictions

• OpenGL Polygons must be simple!

• OpenGL Polygons must be convex

(a) simple, but not convex

(b) non-simple (c) convex

47

Why Polygons Restrictions?

• Non-convex and non-simple polygons are expensive to
process and render

• Convexity and simplicity is expensive to test!

• Behavior of OpenGL implementation on disallowed
polygons is “undefined”

• Some tools in GLU for decomposing complex polygons
(tesselation)

• Triangles are most efficient

48

Polygons Strips

• Efficiency in space and time!

• Reduces visual artefacts

!

!

!

• Polygons have a front and a back, possibly with different
attributes!

Attributes: Color, Shading, Reflections

49

• Part of the OpenGL state

• Set before primitives are drawn

• Remain in effect until changed!

Physics of Color

50

• Electromagnetic radiation

• Can see only tiny piece of the spectrum

Color Filters

51

• Eye can perceive only 3 basic colors!

• Computer screens are designed accordingly

wavelength (nm)

amplitude

Cone response
Source: VOS & Walraven

Color Spaces

52

• RGB (Red, Green, Blue)!

 Convenient for display
 Can be unintuitive (3 floats in OpenGL)
!

• HSV (Hue, Saturation, Value)!

 Hue: what color?
 Saturation: how far away from gray?
 Value: how bright?

• Other formats for movies and printing

RGB vs HSV

53

Gimp Color Picker

Example: Drawing a shaded polygon

54

• Initialization: the “main” function

int main(int argc, char ** argv)
{
 glutInit(&argc,argv);
 glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB);
 glutInitWindowSize(500,500);
 glutInitWindowPosition(100,100);
 glutCreateWindow(argv[0]);
 init();
…

GLUT Callbacks

55

• Window system independent interaction

• glutMainLoop processes events

…
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
! glutMainLoop();!
 return 0;
}

Initializing Attributes

56

• Separate in “init” function

void init()
{
 glClearColor (0.0,0.0,0.0,0.0);
 // glShadeModel (GL_FLAT);
 glShadeModel (GL_SMOOTH);
}

The Display Callback

57

• The routine where you render the object

• Install with glutDisplayFunc(display)

void display()
{
 glClear(GL_COLOR_BUFFER_BIT); // clear buffer
 setupCamera(); // set up camera
 triangle(); // draw triangle
 glutSwapBuffers(); // force display
}

Drawing

58

• In world coordinates; remember state!

void triangle()!
{
 glBegin(GL_TRIANGLES);
 glColor3f(1.0,0.0,0.0); // red
 glVertex2f(5.0,5.0);
 glColor3f(0.0,1.0,0.0); // green
 glVertex2f(25.0,5.0);
 glColor3f(0.0,0.0,1.0); // blue
 glVertex2f(5.0,25.0);
 glEnd();
}

The Image

59

glShadeModel(GL_FLAT) glShadeModel(GL_SMOOTH)

color of last vertex each vertex separate color
smoothly interpolated

Flat vs Smooth Shading

60

Flat Shading Smooth Shading

Projection

61

• Mapping world to screen coordinates

void reshape (int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if(w<=h)
 gluOrtho2D(0.0,30.0,0.0,30.0 * (GLfloat) h/(GLfloat) w);
 else
 gluOrtho2D(0.0,30.0 * (GLfloat) w/(GLfloat) h, 0.0,30.0);
 glMatrixMode(GL_MODELVIEW);
}

Orthographic Projection

62

• 2D and 3D versions

• glOrtho2D(left, right, bottom, top)

• In world coordinates!

Screen coordinates

63

Screen coordinates

64

Viewport

65

• Determines clipping in window coordinates

• glViewPort(x,y,w,h)

Let’s code a triangle!

66

Summary

67

• A Graphics Pipeline!

• The OpenGL API

• Primitives: vertices, lines, polygons

• Attributes: color

• Example: drawing a shaded triangle

Next Time: Input & Interaction

68

CPU GPU

“client” “server”

http://cs420.hao-li.com

Thanks!

69

